
iBlink: Smart Glasses for Facial Paralysis Patients

Abstract—Facial paralysis patients lose blinking ability on the
affected side of the face, which can incur eye damage even
blindness. In this paper, we design and implement a smart
eyeglass iBlink to assist blinking for facial paralysis patients.
The basic idea is to monitor the normal side of the face with a
camera and stimulate the affected side to make both sides move
symmetrically. To the best of our knowledge, this is the first piece
of wearable device for facial paralysis therapy. In particular,
we first propose an eye-movements detection mechanism based
on deep convolutional neural network (CNN), which can detect
asymmetric eye-movements under various illumination conditions
with an accuracy above 99%. Our library containing more than
30, 000 eye images for training CNN models is published online
for further related studies. Second, we design and implement
an automatic stimulation circuits to stimulate the patient’s facial
nerve branches, which can configure operational parameters in a
self-adaptive manner for different patients. Third, we implement
the entire iBlink system integrating the two functions above and
conduct comprehensive experiments for performance evaluation.
Moreover, we conduct clinical trials in a hospital to obtain the
design basis and verify effectiveness of our device.

I. INTRODUCTION

Facial paralysis is a disease making people losing facial
movements, which is caused by nerve damage. People suffer-
ing from facial paralysis usually have muscles on one side of
the face noticeably droop, which seriously impacts the person’s
quality of life. What is worse, facial paralysis can incur eye
damage even blindness, because the eyelid on the affected side
can not fully close, which makes the eye dry and infected by
debris. The most common form of facial paralysis is known
as Bell’s palsy, which impacts 40, 000 people in U.S. each
year, where the typical symptom is the muscle dysfunction
on one side of the face [1], [27]. Most Bell’s palsy patients
will completely recover in around 6 months with or without
medical treatment; however, a few cases of facial paralysis
patients could never completely return to normal. The current
treatments for Bell’s palsy include drugs and surgery, which
is of side effect and controversial, respectively [1].

Efforts have been dedicated to find the cause of Bell’s palsy;
however, the exact cause is still unknown [1]. To the best
of scientists’ knowledge, the paralysis is due to the pressure
incurred by infection in the tunnel containing main trunk
of facial nerves, where the tunnel is inside of the people’s
head termed as the Facial canal. An interesting phenomenon
corroborating the theory is: using electric current of 3−11mA
to stimulate the facial nerve branches could make the eye
closing for most of patients, which indicates that the facial
muscle and nerve branches are still working.

In this paper, we propose to use wearable device to improve
the facial paralysis patient’s quality of life. In particular, we
design and implement a pair of smart glasses iBlink to assist

facial paralysis patients to blink. To the best of our knowledge,
this is the first piece of wearable device for facial paralysis
therapy. The basic idea of iBlink is to monitor the normal side
of the face with a camera and stimulate the paralysed side, so
that eye-movements of the both sides of the face could become
symmetric. Our contributions are as following:

First, we propose an eye-movements detection mechanism
based on convolutional neural network (CNN), which can
detect not only eye-movements such as closing, opening and
blink but also anormal eye-movements of facial paralysis
patients under various lighting conditions even at night (Sec-
tion IV-B). We collected more than 26, 000 eye images under
different illumination conditions and more than 7, 750 images
under infrared (IR) lights from 12 different people to train
the CNN models. The detection accuracies for daytime and
nighttime are both above 99%. We publish the image library
to support further related studies on facial paralysis [2].

Second, we design and implement an automatic stimulation
circuits to generate electrical impulse for the user’s facial nerve
branches stimulation (Section V). The circuits are controlled
by a self-adaptive control mechanism, which accommodates
individual and environment diversity. In particular, the circuit
can elevate stimulation level incrementally until an appro-
priate level is found for a specific user. We also implement
a pain control and a sleep protection scheme, so that the
possible pain incurred by over stimulation can be avoided
(Section VI-A); moreover, the circuits can also automatically
switch to different modes according to illumination conditions
(Section VI-A). Further, we develop an scheme to adjust
the frequency of anomaly detection for power saving (Sec-
tion VI-B). Experiments show that our stimulation circuits
could continuously work for 48 hours with a lithium battery
pack.

Third, we implement the entire iBlink system, which in-
tegrates the mechanisms mentioned above. The related com-
puting and control mechanisms are hosted in a NanoPi2 [35]
platform, which connects other hardware components such as
camera and stimulation circuits. We evaluate the performance
of our system with comprehensive experiments (Section VIII);
moreover, we conduct clinical trials in a hospital with our
device, in order to obtain the design basis of iBlink and
verify the effectiveness of our device (Section VIII-D). More
implementation details could be found in our technical report
[3] due to limitation of space.

II. BACKGROUND AND MOTIVATION

Facial paralysis. A person’s facial muscles are controlled
by facial nerves, and a facial paralysis sufferer has a dys-
function in the facial nerve system, thus loses the facial
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movements. The left part of Fig. 1 shows a man with Bell’s
palsy on his right side of the face tries to raise his eyebrows
and show his teeth [4]. It is clear that the facial muscles on
his right side of face cannot move. The right part of Fig. 1
shows the anatomy of facial nerves based on [5]. The yellow
and orange curves represent facial nerves of the left and right
side of the face, respectively. The lesions typically occur at
or beyond the stylomastoid foramen to the facial canal, which
is a canal between the stylomastoid foramen and the internal
acoustic meatus as shown in the right part of Fig. 1. Facial
nerve branches are usually still working.

Fig. 1. Anatomy of facial nerves.

The basic aim of facial rehabilitation is facial symmetry
at rest and when facial expressions are performed [21]. Eye
protection plays a crucial role, since patients could not blink,
which makes the eye lack of moisture and protection. The
incurred complications such as corneal ulcer and lagophthal-
mos could further cause blindness. In clinical cases, doctors
provide different treatments especially towards eye care based
on an individual’s expectation for recovery, degree of risk to
the cornea and eye weakness [1], [9], [22].

Since a majority of Bell’s palsy patients will completely
recover in around 6 months, they normally take supportive
measures, which include lubrication with artificial tears, ocular
ointments and taping of the eyelid [30]. However, moisture
chemicals has high risk of surface toxicity and tapes may
touch the cornea or conjunctiva, which incur further trauma.
Static or dynamic surgical procedures could be operated on
prolonged and permanent paralysis sufferers. Nevertheless,
such procedures involves complicated medical techniques and
complications, which increases pain of patients [24], [28],
[29], [31].

Electrical stimulation.Transcutaneous electrical stimula-
tion (TENS) is taken by physiotherapists as on option for
enhancing recovery in patients with facial paralysis [6], [7],
[10], which is to apply electrical stimulation to facial nerves
without breaking the facial skin. The electrical stimulation has
been proved safe and does not interfere with recovery [6], [11],
[25].

An interesting observation of electrical stimulation is: the
appropriate electrical stimulation could make people blink if
the facial nerve branches are not damaged. We conduct an
experiment in a hospital to verify the effect, as shown in Fig. 2.
The device in the left sub-figure is a Medtronic Keypoint

electromyography (EMG) workstation [8], which is used to
evaluate and record the electrical activity produced by skeletal
muscles. The EMG workstation can generate electric current
impulses, which can be directed to the person’s facial skin
through a pair of electrodes as shown in the middle sub-figure.
By appropriately configure the strength, width and frequency
of the impulse, the impulse can induce a person with functional
facial nerve branches to blink as shown in the right sub-figure,
where the right eye of the person is smaller than the right one
as the right eye is to blink when the picture is taken.

Fig. 2. Electrical stimulation induced blink.

Motivation.Our work in this paper is motivated by the
electrical stimulation approach for facial paralysis treatment,
and the observations of facial paralysis’ characteristics. Since
paralysis usually occurs in one side of the face and the facial
nerve branches are usually functioning, we could use electrical
stimulation to make the paralyzed side to move accordingly
to make the both sides of the face symmetric. In particular,
the electrodes could be applied to nerve branches controlling
blinks, so that the eye damage could not happen. These
functions could be implemented in a wearable smart glasses
for the user’s convenience, which could help improve their
quality of life before the paralysis goes away completely.

III. DESIGN AND CHALLENGES

The architecture design of iBlink is shown in Fig. 3, which
includes hardware layout and software function modules.

Hardware. A camera is installed in front of the eyes to
monitor eye-movements in real time. The eye camera captures
images of both eyes and send them to the NanoPi2 platform,
which also monitors the ambient lighting condition. The
NanoPi2 and stimulation circuits are located on the patient’s
paralyzed side of the face, where NanoPi2 and stimulation
circuits are in the outer side of the glass frame, and two
stimulating electrodes are in the inner side of the frame
pressing on the patient’s face skin. The NanoPi2 has Wi-Fi and
Bluetooth interfaces which can be utilized for communication
with smartphones. A power unit supports both the processing
platform and the stimulation circuits. Our circuits also contain
a potentiometer as the pain switch, which could fine-tuning
the automatic stimulation level control scheme. This is to
accommodate individual diversity in case of discomfort.

Software. The software consists of four layers: input layer,
processing layer, execution layer and communication layer.



3

Fig. 3. Design of the iBlink system

The input layer receives the input images and ambient illu-
mination data from the camera and pain control action from
the pain switch. The images and illumination data are sent to
the processing layer for day-and-night model selection, blink
detection, anomaly detection and blink frequency calculation.
The execution layer contains stimulation control and sampling
control. The stimulation control takes in the result of detec-
tions and calculations from the processing layer to adjust the
electric stimulation parameters for the patients automatically.
It also responds to patients’ actions on the pain switch. The
sampling control takes in results from the processing layer and
adjusts the sampling frequency of the camera. When a doctor
acquires for patients pathology data or the patients need to
report their pathology record, they can transmit data via the
communication layer. The communication layer is compatible
with both Wi-Fi and Bluetooth transmission, where the details
could be found in [3].

Challenges. First, the system has to accommodate indi-
vidual diversity. The EMG clinical trials show that different
patients require different configurations of the stimulation
impulse to enable blinking. The blink frequencies of different
people also vary, which makes efficient blinking detection dif-
ficult. Moreover, the paralysis could make muscles around the
eye droop in different degrees for different patients, which also
incurs difficulties for asymmetric eye-movements detection.

Second, the system has to accommodate environment
changing. The patient’s current conditions are monitored by
the camera, thus illumination conditions could significantly
influence the accuracy of the detection layer; however, the
illumination conditions could change due to people’s mobility
and time changing. Such an unstable factor also imposes
challenge to facial expression detection.

Third, the system has to be power efficient. This is the
challenge for all mobile devices. In our case, we need to lower
the frequency of the power-consuming electrical impulses as
much as possible. The stimulation circuits generates electrical
impulses at the frequency of blink detection, while the camera
has to monitor movements of the eyes at a high sampling rate
to avoid information loss, which makes the sampling control a
difficult trade-off and the power saving a noticeable challenge.

IV. FACIAL IMAGE PROCESSING

A. Working Procedure

Facial image processing provides basis for blink detection,
anomaly detection and blink frequency calculation, where the
procedure is shown in Fig. 4. The system needs to detect
whether an eye is blinking. The event that the healthy eye
is blinking and the other eye is not can be detected by the
anomaly detection module, which initiates the stimulation
circuits. By analyzing the sequence of blink detection, the
system could estimate the patient’s blink frequency, so that
an appropriate sampling frequency for the camera could be
obtained.

Fig. 4. Workflow of facial image processing

In particular, we use two fixed windows to cut the single-eye
images from the camera input for each image frame captured
by the eye camera. We train the CNN model with images
of the left eye and the right-to-left flip of the right eye, so
that we could use just one CNN model to detect status of
two eyes. Considering different illumination conditions, we
train two CNN models for daytime and nighttime with IR
scenarios. The model selector is to decide the images are to
be processed by the model for which illumination condition.
We find the threshold of model selection through experiments,
which are to be introduced in Section VIII in detail. With the
extracted CNN features, we implement a classifier acting as
a solver of the two-class classification problem, which labels
0 as eye closure and 1 as eye opening. A sequence of such
labels could be used for detecting different events.

B. Deep Convolutional Neural Network

We use deep learning for image processing due to its
robustness. Facial paralysis patients’ eyes could sometimes be
half-way open, slanted or in other more complicated shapes,
thus eye images with the same ‘open’ label can vary greatly.
Moreover, illumination, personal difference and expression can
add diversity to eye images, making labeling eye images more
difficult. Since high precision for our medical device is a
must, we need a robust model to achieve high accuracy and
high computation efficiency with different person and under
different conditions. We utilize deep convolutional neural
network (CNN) [17]. The detail of our CNN network structure
is shown in Fig. 5. We train our CNN using the deep learning
framework Caffe [14].

Our CNN consists of three convolutional layers and one
fully connected layer. Each convolutional layer is followed by



4

Fig. 5. CNN network structure

a max-pooling layer. For each convolutional layer we extract
the convolved feature of previous layer’s output with a linear
filter. We apply multiple filters with weights W k and bias bk

to obtain multiple feature maps. For each feature map F k at
layer k, its values are obtained by:

F k
ij = σ(W k × xij + bk), (1)

where σ is a non-linear operator and xij is the input. After
the convolutional layer each feature map is subsampled by the
pooling layer to lower the dimension. We use the max-pooling
with a non-overlapping manner. We also use ReLU [15] layers
after every convolutional layer and dropout [16] layer after the
third convolutional layer to improve the performance. After
extracting robust features, the Softmax Loss layer computes
the probability vector for classifying the images. The input
for our CNN is 40× 40 single-eye images.

In order to reduce the effect of local expression and personal
difference in eye shapes, and to cover different illumina-
tion conditions the patients will encounter in different daily
scenarios, we collected 16,951 eye images under different
daylight condition and 5,750 images under IR lights from
12 different people to train the CNN models. Due to the
facial symmetry, we mirrored the eye images to augment the
dataset and yield 33,902 training images. We used 10% of
the training data for cross validation and the other 90% for
training the deep convolutional neural networks. The training
accuracies for daytime and nighttime model are 99.5% and
99.1%, respectively. We also collected another 12,000 eye
images under 6 different illumination conditions for testing
the two CNN models. The testing accuracies will be shown in
the experiment section.

C. Blink Detection and Anomaly Detection

After we have the eye status sequence, we define a blink
sequence as a short status sequence in the form of ‘1,0,1’,
which means the eye opens, then closes and opens again. Since
a normal blink takes about 200ms to 400ms and our sampling
rate is 20 to 30 frames per second, there could be multiple
frames captured in a normal blink process. Multiple 1s and 0s
can appear in a blink sequence, e.g., ‘1100011’. The adjustable
sampling rate of iBlink ensures that there will be at least three
consecutive 0s in a normal blink sequence. Since there could
be false detection on the eye status, we introduce a polling
method to correctly identify a blink. For each detection we take

Np sampling results in the eye status sequence in a sliding-
window manner. If 0s are the majority in the poll, a blink will
be identified. The polling method makes our system tolerant
of detection exceptions in the eye status. The value of Np is
empirically set to 3 in our system.

The blink detection will be applied on both left and right
eye sequences simultaneously. In most cases, people close
and open their eyes almost at the same time, while a facial
paralysis patient usually cannot close their eye on the ill-
side. Consequently, if the blink detection gives a different
result on two eye status sequnces, we define it as an anomaly.
Once an anomaly is detected, iBlink will give the patient an
electrical stimulation through sending out a signal through
GPIO interface of the NanoPi2.

V. STIMULATION CIRCUITS

The stimulation circuits are consisted of an amplifying
circuit and a level control circuit. The amplifying circuit takes
in pulse width modulation (PWM) waves from the NanoPi2
and amplifies them to generate the stimulation output on the
stimulating electrodes. The level control circuit implements 16
different output stimulation levels on the stimulating electrodes
by adjusting the power level of the amplified PWM waves
according to the control signals from the NanoPi2 and the
input from the pain switch. The working procedure of the
stimulation circuits is shown in Fig. 6.

Fig. 6. Workflow of the stimulation module.

The amplifying circuit takes in 3.3V PWM waves from the
NanoPi2 and 7.4V power input from the power unit. In the
red amplifying loop the eye camera monitors the feedback of
patient after every stimulation. The NanoPi2 sends out PWM
waves according to the result of blink detection and anomaly
detection. And the amplifying circuit amplifies the PWM
waves to output between 100V to 200V on the stimulating
electrodes. The level control circuit takes in the GPIO signals
and patients’ fine-tuned pain switch input to adjust the level
of the stimulation, which is shown in the level control loop.

Amplifying circuit. The amplifying circuit contains three
bipolar junction transistors (BJTs), one transformer and several
resistances to amplify the PWM waves from the NanoPi2. A
7.4V lithium battery pack provides the circuit power and a pair
of finely placed stimulating electrodes are used as an output to
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stimulate patients facial nerve branches. The implementation
of the amplifying circuit is shown in the left part of Fig. 7.

Fig. 7. Circuit implementation.

We use 9013 NPN BJT triode [32] in the circuit, which
is a kind of NPN low power triode mainly used for audio
amplification and radio 1W push-pull output. The type of the
PNP BJT is 8550 [33], which is characterized by small signal,
low voltage and high current and is mainly used in switches
and RF amplification. The transformer amplifies the 3.3V
PWM waves to about 200V output. For stimulating electrodes,
we use electrodes made of conductive ointment, which can be
finely attached to human skin and have good electrical con-
ductivity. The distance between the two stimulating electrodes
is set to be 3.3 cm, which is chosen empirically from our
experiments and clinical trials to invoke the best stimulation
reactions. Those conductive ointment electrodes can be easily
changed for maintenance purpose on a regular basis.

Level control circuit. The level control circuit is shown in
the right part of Fig. 7. It consists of a bilateral switch chip
CD4066BE [34] and a potentiometer. The bilateral switch chip
takes in GPIO control signals from NanoPi2 and changes
the output voltage level of the stimulating electrodes by
switching resistances with different values. In our circuit, we
implement 16 stimulation levels for the output. We also use
a potentiometer as a pain switch to allow patients to adjust
the output voltage manually. The potentiometer is designed to
adjust the voltage only within one stimulation level in case of
misoperation.

Due to unpredictable factors such as temperature, humidity
and shape of human skin, conductivity of the skin varies not
only among different people but also in different time and
places. We cannot accurately set the stimulation intensity to a
fixed value. Our level control circuit provides the hardware for
automatic stimulation level selection and manual fine-tuning
in discomfort cases.

VI. AUTOMATIC CONTROL MECHANISM

A. Stimulation Control

Requirements analysis. First, as we mentioned in the
previous section, the conductivity of human skin varies in
different situations, so people can have different thresholds
for stimulation. We conduct clinical experiments on 5 facial
paralysis patients in a hospital with the EMG approach. The

equipment we use in the hospital measures the stimulation
intensity by electric current. Table. I shows the critical points
for stimulation reactions of different patients. The values of the
electric current thresholds are found by manually increasing
the value by a stride of 0.1 mA, which is inconvenient and
inefficient. For a wearable medical device such as iBlink we
need a mechanism that can automatically and efficiently find
patients’ critical points.

TABLE I
MEASUREMENT OF CRITICAL POINTS ON DIFFERENT PEOPLE

Label Gender Age Critical Point (mA)
1 Female 42 5.7
2 Male 19 10.6
3 Male 35 7.0
4 Male 28 6.4
5 Female 22 4.5

Second, patients wear the iBlink on a daily basis, where
the electric stimulations are applied to the patients according
to the result of real-time image processing. Since the status
of a human body and the surrounding environment can be
changing in different times of a day, dynamically adjusting
the stimulation parameters is a practical need.

Third, since human facial skin is very sensitive, in case of
discomfort or pain, the iBlink needs to adjust the stimulation
parameters in time according to the real-time feedback from
the patients. Thus, automatic stimulation control is a must for
our medical device.

Mechanism design and implementation. We define five
working modes for our iBlink system:

• Startup Mode: When the patients first wear the device
and start the system, the iBlink automatically searches
for a lowest stimulation level that can invoke an eye-
closing reaction. The corresponding stimulation voltage
is recorded for future use.

• Daytime Mode: The iBlink works in this mode when the
illumination condition is good. This is the basic mode that
runs in majority time of a day.

• Nighttime Mode: When the illumination intensity is low,
iBlink starts the infrared lights and use the nighttime
CNN for image processing.

• Pain Control Mode: This mode runs concurrently with
the other four modes. Once receives the patient’s signal,
the iBlink automatically decreases the stimulation level
to avoid pain by over stimulating.

• Sleeping Mode: If the patient’s healthy-side eye is closed
for a long time, iBlink regards the patient as asleep
and starts sleeping protection. This mode can keep the
stimulation level as low as possible during patient’s
sleeping time.

Figure. 8 shows the workflow of the automatic stimula-
tion control, where ALI means ambient light intensity, Tp

is the pain threshold and Ts is the sleeping threshold. The
automatic stimulation control mechanism relies mainly on
the input of illumination data and blink detection results.
In the startup mode, the stimulation level starts from 0 and
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Fig. 8. Working flow of automatic control mechanism.

increase incrementally. The eye camera monitors the feedback
of the patient’s eyes. If there is no blink resulting from the
stimulation, the stimulation level continues to rise, until it
reaches the lowest level that causes an eye-closing reaction.
The eye camera also monitors the illumination data, with
which a model selector can switch between daytime mode and
nighttime mode. In the nighttime mode, the infrared lights are
turned on automatically. In case of discomfort or pain, which
means there exists an over stimulating situation, the patient
can give a signal by closing the healthy-side eye for a certain
length of time. This triggers the pain control mode and the
stimulation level starts dropping, until a new critical level is
found. The sleeping mode takes similar mechanism as the pain
control mode, only with longer threshold time. Since patient’s
eye is always closed during sleep, this mechanism can always
find the lowest stimulation level that can trigger an eye-closing
reaction. The detailed pain control algorithm could be found
in [3].

B. Sampling Control

Normal people can keep their eye open for about 2 seconds
to 8 seconds and then close their eye for about 0.2 seconds to
0.4 seconds. To capture the exact movement of patients’ eyes,
the camera sampling frequency should be neither too low to
lose useful information nor too high to consume much power.
In this section, we describe our adaptive sampling algorithm
which automatically adjusts the system’s sampling frequency.

Upper and lower bounds of sampling interval. We
set the upper bound of sampling interval BU to be 0.05
seconds, which ensures there will be at least 3 closed eye
images captured by the eye camera. Since the fastest sampling
frequency of our camera is 30Hz, the lower bound of the
sampling interval BL is 0.033 seconds.

Adaptive sampling algorithm. Suppose the sampling in-
terval is τs, it can be expressed as

τs = BL + (BU −BL)r, (2)

where r is a factor with 0 < r < 1. We calculate the blink
interval τb by averaging the time of all neighboring points of
the same status in the blink graph and merge them into one
point. The blink graph is derived by applying poll method to
the eye status sequences during blink detection. In this way,
all neighboring points on blink graph are of different status.
The blink interval is the time interval between two neighboring
points when the eye is open. The definition of the blink interval
is defined in Fig. 9.

Fig. 9. Definition of the blink interval

When we are calculating the current time-interval, we look
back to the past M · 2 sampling intervals, where M is a
predefined positive integer. We calculate the average of the
early M blink intervals as τ̄1b and the average of the other M
intervals as τ̄2b . We set a empirical threshold τT and compare
τ̄1b with τ̄2b . Different events can be defined according to the
comparison result:

• Advance Event: τ̄2b − τ̄1b > τT , i.e., the increment of blink
interval is larger than the threshold.

• Back-off Event: τ̄1b −τ̄2b > τT , i.e., the decrement of blink
interval is larger than the threshold.

• Stable Event: |τ̄1b − τ̄2b | < τT , i.e., the change of blink
interval is within the threshold.

If the Advance Event is detected, the iBlink increases the
sampling frequency as the patient has the tendency to increase
their blink frequency. If the Back-off Event is detected, the
iBlink decreases the sampling frequency.

The new r under Advance Event can be calculated as

r = r̂ − αD r̂, (3)

where 0 < αD < 1 and r̂ is the previous r and αD is a
constant factor that controls the rate at which r decreases.

The new r under Back-off Event can be calculated as

r = r̂ + αI(1− r̂), (4)

where 0 < αI < 1, r̂ is the previous-round r and αI is a
constant factor that controls the rate at which r decreases.

The design of the formula makes r decrease slower and
increase faster when it is small and increase slower and
decrease faster when it is big. The parameter r will change
the sampling interval accordingly. We set the initial value of
r to be 0.5 which is empirically suitable for normal patients.
The adaptive sampling algorithm could be found in [3].

VII. SYSTEM IMPLEMENTATION

The components of the system are tabulated in Table II.
Figure. 10(a) shows the main components of the iBlink smart
glasses. The iBlink prototype is consisted of NanoPi2, stim-
ulation circuits, stimulating electrodes, an eye camera with
infrared light unit and a power unit. We use NanoPi2 as
the main processor. The infrared light unit is installed on
the USB eye camera and powered by the GPIO output from
NanoPi2. We design our own stimulation circuits with am-
plifying and level control circuit embedded. The pain switch is
implemented by a potentiometer to fine-tune the voltage output
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on the stimulating electrodes. The power unit is a 7.4 V lithium
battery pack. Figure. 10(b) shows our wearable prototype.

TABLE II
COMPONENTS OF THE SYSTEM

Component Properties
NanoPi2 1.4GHz CPU, 1G RAM, Linux

Eye Camera 640 ∗ 480, 30fps, USB port
CD4066BE −0.5V to 20V , ±10mA
9013 triode NPN, Imax = 0.5A, power 625mW
8550 triode PNP, Imax = 0.5A, power 625mW

(a) (b)

Fig. 10. (a) The main components of iBlink. (b) The wearable prototype.

VIII. PERFORMANCE EVALUATION

A. Eye Status Detection
We first visualize the convolved feature maps for eye images

with different status and illumination conditions, and then
evaluate the performance of eye status detection by measuring
the accuracy of the two CNN models.

Figure 11 shows open and closed eye images under different
illumination conditions and the convolved feature maps for
each image. Row (a) shows the open eye images in different
scenarios and row (b) contains the convolved feature maps
after the third convolutional layer in CNN. The closed eye
images and their corresponding feature maps after the third
convolutional layer of CNN are shown in row (c) and row
(d). The six columns demonstrate 6 different scenarios under
different illumination conditions. From left to right the average
illumination intensities are: less than 10lx, 10lx, 20lx, 50lx,
100lx and more than 1500lx. These illumination intensities
corresponds to six major scenarios a patient will encounter
in daily life. Column 1 corresponds to the nighttime scenario
and column 6 represents the outdoor scenario. Column 2-5
represent four different light condition in indoor scenarios:
dark indoor spot, indoor on a cloudy day, room with dim
light and indoor on a sunny day. For those different illumi-
nation conditions, we trained two CNN models, daytime and
nighttime. The daytime model is used in outdoor scenario and
indoor scenarios with sufficient light. The nighttime model is
used at night and in some dark indoor scenarios with little
illumination. The input images for the nighttime model are
captured with the infrared lights on.

In Fig. 11, the feature maps of open eye images in row
(b) all have a circle-sized hot spot in the middle, which

Fig. 11. Eye images and convolved feature maps after the third convolutional
layer.

Fig. 12. Eye status detection. Fig. 13. Voltage - Stimulation Level.

indicates the appearance of an eyeball, while in row (d) the
closed eyes are indicated by a line figure in the feature maps.
Note that in column 2 most values of the closed eye image’s
feature map are high, which can result in lower accuracy
in the classification step. This is caused by low illumination
intensity. To avoid the low accuracy, we set a threshold of
15lx. Scenarios with lower than 15lx illumination intensity
will be processed by the nighttime model.

The eye status detection accuracies of daytime model and
nighttime model are shown in Fig. 12. We collected 500 open
eye images and 500 closed eye images for each illumination
condition in both normal and infrared version from 5 different
people as the test data (12000 in total). With the illumination
intensity over 20lx, the daytime model’s accuracy is very close
to 100%. When the illumination condition reaches more than
1500lx, the accuracy slightly drops due to the existence of
some extreme cases, i.e., the illumination intensity reaches
more than 10000lx. Since those extreme cases are rare and
unlikely, our daytime model satisfies patients’ needs in daily
scenarios. When the illumination intensity drops to under 20lx,
the nighttime model performs much better than the daytime
model. In scenarios like dark indoor corners or corridors, the
nighttime model can achieve an accuracy higher than 98%,
which is 10% more than the daytime model. Due to the
accuracy drop, we set a 15lx threshold for the model selector
to ensure a high accuracy in different scenarios.
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B. Automatic stimulation control

According to the clinical trial, a voltage between 100V to
200V can induce an eye-closing reaction. We divide the output
voltage into 16 levels in our circuits, ranging from 0 to 184V.
Figure 13 shows the output voltage for each stimulation level
and the trend curve of the levels. In our circuit the stimulation
levels do not divide the voltage range equally. The trend
curve’s slope tend to decrease when the stimulating level rises.
We choose this level distribution since we need those levels
with high voltages to increase slowly in case of discomfort or
pain, while those with low voltages to increase fast to reach
the critical point. The stimulation voltage also can be fine-
tuned by the pain switch on each level. The fine-tuning can
only increase or decrease the voltage by at most a half of
the corresponding level, which can prevent misoperations that
leads to huge change on the output voltage.

To test our stimulation control method in practice, we
record the change of stimulation level by measuring the output
voltage of the stimulating electrodes. Fig. 14 shows the output
stimulation level change we recorded. We ask our test subject
to cover all the scenarios we have in the stimulation control.
From time unit 0 to 12 is the startup phase. The stimulation
level continues to rise according to the feedback from the eye
camera. When it reaches the lowest level that can cause an eye-
closing reaction, i.e., a critical point, the rising procedure stops
and the voltage stabilizes on that stimulation level. Starting
from time unit 13 to 18 is the first pain control phase. It
is when the patient feels a mild pain and needs to fine-tune
the voltage output. Note that the fine-tuning can increase or
decrease the voltage in at most half range of the current
stimulation level. The stimulation level eventually stabilizes
on a voltage that is slightly smaller than the voltage of level
12.

At the 50th time unit the second pain control starts. In this
pain control phase the patient feels a relatively strong pain and
triggers the close-eye method. When iBlink detects the patient
closes his eye for more than 3 seconds, the stimulation level
starts dropping and stops at the first level that cannot invoke
the eye-closing reaction. Then the level rises back by one to
the new critical level that can cause the close eye reaction.
The patient then fine-tunes the voltage by the pain switch.
After time unit 100, the stimulation control enters the sleep
protection mode. The close-eye method is again triggered. The
stimulation control attempts to drop the stimulation level every
several time units. When the attempted stimulation level causes
an eye-closing reaction, the voltage stabilizes at the lower
level. By this method, the stimulation level is always kept on
the lowest level that can cause a close eye reaction, avoiding
continuous pains during the patient’s sleep.

C. Power consumption

The electric stimulations in our system are power-
consuming. Since the patients wear the iBlink smart glasses
on a daily basis, both day and night, we need to ensure there’s
enough power for at least one day. In our system we use a
7.4 V lithium battery pack as the power unit. We measure

Fig. 14. The change of stimulation level

the longevity of the battery by making the system run all
day nonstop. During the test the stimulation module performs
different stimulations in different scenarios. With our power-
saving algorithms in the stimulation control and sampling
control, the 7.4 V lithium battery pack can last more than
48 hours, which is sufficient for a patient’s daily use.

D. Clinical trials

We conduct clinical trials in a hospital. A middle-aged
female patient volunteers to try our device as shown in Fig. 15.
The left image in Fig. 15 is the patient’s normal eye status.
The camera is installed on the health left side of face and
the electrodes are on the right side of her face, which is
the paralyzed side. We can see that her right eye opens a
little wider than the healthy side eye. The middle image is
when the patient is closing her left eye while her right eye
cannot be closed. This is when the iBlink sends out the
stimulation signals. The right image in Fig. 15 is when the
electric stimulation invokes an eye-closing reaction and the
patient is able to close both of her eyes. The result of this trial

Fig. 15. Clinical trial.

proves that our device can satisfy the patient’s requirement.
Note that our iBlink prototype has updated after the clinical
trials in the hospital. In Fig. 15 is the previous version of the
iBlink and it is used for testing and data collection purpose.
We upgraded the iBlink to the one shown in Fig.12.

IX. RELATED WORK

Kim et al. propose to use smart phones to diagnose facial
paralysis [26], where the ‘asymmetric index’ is proposed to
evaluate the degree of asymmetry of both sides of the face.
Through measuring the asymmetric index during different ex-
pressions like resting, eye-brow raising and smiling, the smart-
phone could help determine if the facial paralysis happens
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to the person. However, the diagnosis accuracy reaches only
89%, which still needs significant improvement. In contrast to
the work just propose an approach to facilitate diagnosis of
facial paralysis, we implement a wearable device to provide
eye protection for paralysis patients.

Wearable computing devices such as Google glasses have
been attracting much attention in recent years. Efforts have
been dedicated to not only design and implement new types
of glasses with interesting functions, but also utilize existing
equipment to carry out jobs like data collection and analy-
sis. iGaze[19] and iShadow[18] are representatives of smart
glasses proposed recently. iGaze establishes person-to-person
as well as person-objects communication by recognizing eye
gaze action. Mayberry et al. propose iShadow, where the
power consumption of real-time sensing is dramatically re-
duced. Rallapalli et al. realize physical analysis in retail stores
based on customer behaviors collected from smart glasses.
Although smart glasses are prevailing nowadays, most existing
devices just focus on entertainment. Our work in this paper
focuses on eye protection for facial paralysis patients, which
is an urgent requirements for a considerable group of people.

X. CONCLUSIONS

We have designed and implemented iBlink, a pair of smart
glasses providing eye protection for facial paralysis patients.
We have proposed an eye-movements detection mechanism
based on deep convolutional neural network (CNN), which can
detect asymmetric eye-movements of patients under various
illumination conditions with an accuracy above 99%. Our
library for training CNN models has been published online
for further related studies, which contains more than 30, 000
eye images. Moreover, we have designed and implemented an
automatic stimulation circuits to generate electrical impulse
for the patient’s facial nerve branches stimulation, which can
configure operational parameters in a self-adaptive manner for
different patients. Further, we have implemented the entire
iBlink system and conducted clinical trials in a hospital to
obtain the design basis and verify effectiveness of our device.
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