
HALP: Heuristic Aided Learned Preference Eviction Policy for
YouTube Content Delivery Network

Zhenyu Song∗†, Kevin Chen∗, Nikhil Sarda∗, Deniz Altınbüken, Eugene Brevdo,
Jimmy Coleman, Xiao Ju, Pawel Jurczyk, Richard Schooler, Ramki Gummadi∗

Google

Abstract
Video streaming services are among the largest web applica-
tions in production, and a large source of downstream inter-
net traffic. A large-scale video streaming service at Google,
YouTube, leverages a Content Delivery Network (CDN) to
serve its users. A key consideration in providing a seam-
less service is cache efficiency. In this work, we demonstrate
machine learning techniques to improve the efficiency of
YouTube’s CDN DRAM cache. While many recently pro-
posed learning-based caching algorithms show promising
results, we identify and address three challenges blocking
deployment of such techniques in a large-scale production
environment: computation overhead for learning, robust byte
miss ratio improvement, and measuring impact under produc-
tion noise. We propose a novel caching algorithm, HALP,
which achieves low CPU overhead and robust byte miss ratio
improvement by augmenting a heuristic policy with machine
learning. We also propose a production measurement method,
impact distribution analysis, that can accurately measure the
impact distribution of a new caching algorithm deployment
in a noisy production environment.

HALP has been running in YouTube CDN production as
a DRAM level eviction algorithm since early 2022 and has
reliably reduced the byte miss during peak by an average of
9.1% while expending a modest CPU overhead of 1.8%.

1 Introduction

YouTube is one of the largest sources of downstream internet
traffic, accounting for 15% of global application traffic in
2021 [27]. It leverages a Content Delivery Network with a
presence in more than 200 countries and territories to serve
videos to over 2 billion users [30]. Caching in CDNs is done
by storing content, such as videos, in proxy servers that are
distributed closer to end users instead of delivering content
from the origin servers. A CDN uses multiple levels of caches

*Equal technical contributions. The corresponding author is Pawel Jur-
czyk (pawelj@google.com).

†Zhenyu is affiliated with Princeton University, but this work was done
during his internship in Google.

0 2 4 6 8 10 12 14
Day

0.450

0.475

0.500

0.525

0.550

0.575

0.600

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s 

ra
ti
o

machine0
machine1
machine2

machine3
machine4
machine5

Figure 1: Byte miss ratios over time for six machines on a
rack, normalized by dividing with a reference constant to hide
the proprietary absolute values. The substantial differences
across machines and over time make it hard to measure a new
cache algorithm’s production impact accurately.

to reduce the cost of content distribution and access latency
for end users. A key metric to optimize in CDN caches is byte
miss ratio, i.e., the portion of user-requested bytes missed in
the CDN cache.

Recently, machine learning techniques have been used to
improve cache eviction and admission policies (e.g., [32,34]).
Caching algorithms can benefit from learning patterns from
existing workloads, predicting which byte is more likely to be
accessed in the future, and using this information to improve
caching decisions.

In this paper, we present a new cache eviction algorithm
called Heuristic-Augmented Learned Preferences (HALP),
and share our experience in deploying HALP at a large scale.
From our experience, while reducing the byte miss ratio is im-
portant to improve cache efficiency, it is not the sole criterion
for deployment. For a solution that uses machine learning to
be deployed in a large-scale production environment, there
are three main challenges that need to be tackled:

• Computation overhead for learning. Learning-based
cache algorithms can be more computationally expen-
sive to run compared to heuristic-based algorithms. The
model training and prediction cost is high compared to



normal cache operation such as LRU eviction. Using
LRB [32] as an example, for each eviction it needs to
run predictions for 64 objects, which makes deployment
cost-prohibitive (≈ 19.2% additional CPU overhead)

• Robust byte miss ratio improvement. Learning-based
cache algorithms can introduce regressions if their de-
sign does not include a regression prevention mecha-
nism. For large-scale systems, bounding regression of
byte miss ratio is crucial. YouTube CDN contains a large
number of locations, and byte miss ratio regressions in
even a few locations could result in degraded user ex-
perience. In addition, having a robust algorithm also
increases our confidence in the design.

• Measuring impact under production noise. It is chal-
lenging to accurately measure the impact of a new evic-
tion algorithm in a large-scale deployment. We cannot
solely rely on simulations as they are imperfect proxies
for production behavior. It is also impractical to replicate
user requests and test different algorithms at every lo-
cation. Therefore, current production practice uses A/B
testing. An example is to compare different machines on
a rack because machines on a rack share the same hard-
ware/software configurations, and the request mix they
receive should be similar. However, in practice, the be-
haviors of machines are never identical. Figure 1 shows
byte miss ratios over time for six machines on a rack.
The substantial differences across machines and over
time make it hard to measure the production impact of a
new algorithm accurately.

To tackle the first two challenges, we develop a novel ap-
proach, the HALP policy, to perform eviction decisions with
low-overhead and to generalize over the whole production sys-
tem with limited regressions. It achieves this by augmenting
a heuristic policy with machine learning instead of learning a
policy end-to-end. The HALP eviction policy uses the heuris-
tic policy to select eviction candidates and the learning policy
to pick the final object to evict from those candidates.

To address the third challenge, we developed an impact dis-
tribution analysis that evaluates the impact of a new caching
algorithm deployment in a noisy production environment.

HALP has been deployed in YouTube’s CDN as a DRAM
level eviction algorithm since early 2022. It has robustly re-
duced the byte miss by an average of 9.1%. In addition, these
improvements were achieved with a modest 1.8% CPU over-
head.

In this paper we make the following three contributions:

• We present Heuristic Augmented Learned Preferences
(HALP), a learned cache eviction algorithm with low
computation overhead and robust byte miss ratio im-
provement by augmenting a heuristic policy with a learn-
able scoring function.

• We propose an impact distribution analysis to measure

the impact of a caching algorithm in the presence of
production noise.

• We evaluate HALP in YouTube’s large-scale production
environment and provide a detailed analysis on how it
improves the cache efficiency of YouTube CDNs. 1

The paper is structured as follows: §2 describes the back-
ground of the problem. §3 covers the design of HALP. §4
introduces our impact distribution analysis design, and §5
shows the evaluation results.

2 Background

In this section, we give an overview of the YouTube CDN
architecture. We then describe heuristic-based caching al-
gorithms and learning-based caching algorithms. Lastly, we
describe the key ideas for deploying a learned cache algorithm
in a large-scale production environment.

2.1 YouTube CDN Edge Cluster Architecture

 Edge Cluster

 Rack 2

DRAM SSD/HDD

 Rack 1

Client playerrequest
Cache
lookup

Origin Servers

Data
retrieval

Figure 2: A YouTube CDN edge cluster contains multiple
racks of servers. Machines in a rack are of the same type.

YouTube CDN [4, 11] contains edge clusters spreading
more than 200 countries and territories globally. As shown in
Figure 2, an edge cluster consists of multiple racks. Each rack
contains multiple cache servers configured homogeneously
using the same type of machines. Servers from different racks
may have hardware from different generations. Each cache
server is equipped with DRAM, SSDs and HDDs used for
caching data chunks. A video is stored in these data chunks
on the cache server.

Client player requests are sharded amongst machines in an
edge cluster. A request includes a key and a byte range of
a data chunk. Because a video is played sequentially, video
range requests are issued sequentially as well. On the arrival
of a request, the server checks if the requested data chunk is

1Two traces from a developed market region and an emerging market
region (§5.2) can be shared with interested parties, but a signed data sharing
agreement between Google and the outside institutions is required.



in its DRAM. If it is not present (a.k.a. is missed), the data
will be fetched from other cache layers such as local SSDs
and HDDs, with the remote origin server being the last resort.
When the DRAM cache is full and a miss occurs, an eviction
algorithm is used to remove data chunks from the cache to
insert new data chunks.

As the first caching tier, the DRAM cache serves an im-
portant role in reducing traffic for subsequent tiers. It also
contributes to the overall storage costs of the YouTube CDN.
A better DRAM eviction algorithm with a lower byte miss ra-
tio would require less DRAM to be provisioned while keeping
a similar traffic reduction on subsequent tiers. This saves the
overall resource cost as long as the computation overhead is
modest (which requires additional CPU resources). We focus
on the byte miss ratio during the peak hours. This is because
during peak hours, large numbers of videos are concurrently
accessed, causing the byte miss ratio peaks, which could de-
grade Quality of Experience (QoE). We therefore focus on
reducing the 95th percentile byte miss ratio: P95 byte miss
ratio. We choose to not directly optimize QoE because it is
too noisy as feedback for each cache eviction. §5.3 and §5.4
list other metrics related to cache performance.

The previous eviction algorithm used in production [28]
uses heuristic to rank chunks. A score is computed for each
chunk by summing its request rate score and end of chunk
score, and the chunk with lowest score would be evicted. The
request rate score is calculated based on the chunk’s past
request rate, which captures the temporal locality. The end of
chunk score is a binary score indicating whether the previous
range request hits the chunk end. Since range requests for a
chunk are issued sequentially, after a client requests the last
byte of a video chunk, the same chunk is less likely to be
fetched again. This score captures the spatial locality.

2.2 Heuristic and Learned Cache Algorithms

Many heuristic cache algorithms maintain a priority queue
for objects in the cache and select the lowest priority object
to evict when a miss occurs. For example, A Least Recently
Used (LRU) policy uses the latest time of access for an object
to determine evictions. This ordering is good for workloads
where objects that have been accessed recently are more likely
to be accessed repeatedly. A First In First Out (FIFO) policy
uses the order in which items were inserted into the cache
for determining evictions. This ordering performs well for
workloads where objects are accessed sequentially. Managing
priority queues is efficient, which makes these algorithms
efficient as well. However, these algorithms work well in
some workloads, but not in others. Caching policies that can
self-tune and balance between different features, recency and
frequency in Adaptive Replacement Cache (ARC) [25] or
object size and frequency in Greedy-Dual-Size-Frequency
(GDSF) [12, 13], can cover a wider range of workloads but
only adapt to specific features [21], limiting their performance

for changing workloads.
Learning-based algorithms like LRB [32] achieve better

performance than heuristic algorithms, because they train a
model to learn the cache access pattern directly from the
trace instead of assuming a static workload behavior. As an
example, LRB maintains features for objects that are both
currently, and historically present in the cache, and trains a
regression model to predict an object’s time to next access.
When an eviction is required, it randomly samples 64 objects
and runs this predictive model on them and evicts the object
which is predicted to be accessed furthest in the future.

When optimizing the byte miss ratio for variable-size ob-
jects, the eviction methodology is similar to optimizing the
miss ratio for uni-size objects. This is because in the variable-
size object scenario, we can treat each eviction decision as
a group of decisions, which evicts each byte of an object
individually.

3 HALP Eviction Policy Design

Heuristic policy

C1
C2
C3
C4

Select
candidates

C4

Eviction
decision

Pairwise comparisons

Model weight update Unlabeled training data

<C1, C2, ?>
<C3, C4, ?>
<C1, C4, ?>

Post-hoc Labels 

1 (C1 first re-accessed)
0 (C4 first re-accessed)
1 (C1 first re-accessed)

Training data queue

<C1, C2, 1>
<C3, C4, 0>
<C3, C4, 0>
<C1, C4, 1>

Model

Object
features

Score

Future requests

C1

Eviction

Online training

Figure 3: The architecture of HALP. A key component of
HALP is a neural network based score function, whose inputs
correspond to the features for a single eviction candidate, and
whose output is a real valued score which tracks the likelihood
of a quick re-access to the same object. When an eviction is
required, a heuristic policy (e.g., LRU) is used to propose
a small set of eviction candidates. Then a neural network-
based model ranks the eviction candidates and selects the
final eviction decision by pairwise comparisons. The same
pairwise comparisons are also used to generate training data
for online training.

This section describes the design of HALP, which is illus-
trated in Figure 3. A key component of HALP is a neural
network based score function, whose inputs correspond to
the features for a single eviction candidate, and whose output
is a real valued score which tracks the likelihood of a quick
re-access to the same object. When an eviction is required, a



heuristic policy is first used to propose a small set of eviction
candidates. Then, a neural network score function is used
to re-rank this small set of candidates, to identify the final
eviction decision. A key design challenge involves how to
learn the scoring function, which involves both generating the
training data and adjusting the weights of the neural network.
As part of its design, HALP also includes the steps required to
efficiently update this score function, starting with randomly
initialized weights.

Because of these design choices, HALP can be deployed
without the operational overhead of having to separately man-
age the labeled examples, training procedure and the model
versions in separate offline pipelines. Therefore, HALP has
minimal extra overhead for operation similar to other heuris-
tic policies, but has the added benefit of being able to take
advantage of additional features to make its eviction decisions
and continuously adapt to a changing access patterns.

To learn the score function efficiently, we convert the rank-
ing problem into a small set of pairwise preference queries,
which is a general and robust framework for learning to
rank [9, 29] multiple items from a list. As a result, HALP
makes repeated use of pairwise comparisons during decision
making to simultaneously generate training data for online
training. One challenge in efficiently managing the training
data is that the time required to identify the labels is non-
deterministic and depends on the future re-accesses to items.
HALP snapshots the features generated for pairwise com-
parisons used at eviction decision time saved as unlabeled
training data tuples (see Figure 3). In parallel, HALP contin-
uously observes incoming requests to resolve any pending
labels for prior comparisons and generate training data that
continuously updates the model.

3.1 Heuristic-based Candidate Selection

A key insight for ensuring a low overhead is that many objects
can be easily excluded from eviction consideration without
the need to use expensive computations, ML or otherwise.
For example, objects near the head of an LRU priority queue
are less likely to be good eviction candidates as opposed to
objects near the tail. Therefore, we can appropriately bias our
learned eviction towards only the tail instead of considering
the entire cache, saving overhead on training and inference.

The goal of using a heuristic policy for candidate selection
is to reduce the ML computational overhead. It also provides
a lower limit on decision quality. This heuristic algorithm can
be selected as LRU, LFU, or other heuristic policies. We find
in practice LRU policy is sufficient to achieve good perfor-
mance.

The number of eviction candidates is a hyperparameter. If
too many candidates are selected, the ML pipeline overhead
will be too high. But too few candidates may lead to not a
single good candidate to evict. We find empirically selecting
four candidates achieves a good balance between the recall of

good candidates and the incurred CPU overhead.

3.2 Ranking-based Learned Eviction

HALP is designed to provide better eviction decisions than
the heuristic algorithm in the general case. To achieve this, the
pairwise comparisons should pick the eviction decision that
is the best for improving cache efficiency. Since the goal of
cache eviction is to use the limited size of the cache to receive
as many hits as possible, finding the best eviction decision
is equivalent to ranking the candidate that will be accessed
furthest in the future (or not at all) highest, in effect evicting
it before other candidates.

After four eviction candidates are selected from the heuris-
tic, the best candidate is selected based on three pairwise
comparisons done in tournament style. The deselected can-
didates are re-inserted into the heuristic policy. In the case
for LRU, those deselected candidates are re-inserted into the
head of LRU queue.

To have a theoretical intuition that the combination of a
heuristic and a learning policy can increase the robustness of
eviction candidate selection, we analyze a simple Gaussian
model for the benefits of re-ranking in Appendix B. This anal-
ysis underlines the conditions under which such re-ranking
might generate more utility than the baseline heuristic.

Online Training. As shown in Figure 3, when a pairwise
comparison is done, the same pair of candidates is selected
to generate training data. However, at the time of prediction,
the required label (i.e., which of these two candidates will be
accessed further in the future) is not available. Therefore, an
initial feature snapshot is taken at the pairwise comparison
during eviction and is buffered in an unlabeled state with a
label placeholder until one of the candidates is accessed again,
making the label available. Accordingly, HALP maintains a
collection of pending comparisons. This collection of pending
comparisons continuously observes all incoming requests,
and upon the first access to either candidate, a binary label is
assigned to construct the training example.

HALP keeps the feature metadata of objects in a “ghost
cache”. For our application of video caching, this metadata is
lightweight relative to the sizes of the objects being cached,
therefore the information continues to be stored for keys that
are evicted from the cache up to a limit. This limit is set to be a
multiple of the number of elements in the actual cache to track
enough history. Evictions from the ghost cache are performed
using LRU when the size exceeds this set limit. When a
key is removed from the ghost cache, pending comparisons
associated with the key are also deleted.

The training data generated from the above procedure is
stored in an in-memory replay buffer. When the replay buffer
accumulates 1024 training entries, it creates a mini-batch to
update the ML model. The retrain batch size is a hyperparam-
eter of HALP and was chosen empirically. Theoretically, a



pathological workload could have access pattern shifts align-
ing with the retraining period, causing HALP performance
degradation. However, we didn’t observe this in our produc-
tion workloads.

The online training framework and the model itself are writ-
ten using XLA [2] and carefully crafted C++ code to ensure
low overhead. We also leverage uncommon synchronization
primitives such as user space per CPU spinlocks and RCUs to
ensure maximum performance without sacrificing scalability
and thread safety in highly concurrent environments.

ML Model. The model is trained as a binary classification
task (which of a pair gets re-accessed first) with cross entropy
loss. It is a simple neural network model with one hidden
layer. We found that increasing the number of layers did not
help improve the model further. With this simple model, we
are able to run a pairwise prediction in 720 ns, and each
training in several ms. And HALP implementation is based
on Google’s SmartChoices service [10]. Details about the
loss function and the model weight updates are provided in
Appendix A.

Feature name Dimension

Access-based
Time between accesses 32
Exponential decay counters 10
Number of accesses 1
Average time between accesses 1
Time since last access 1

Video-specific
End of chunk 1

Table 1: Features used by HALP.

Features. Table 1 shows the features HALP uses. Of these
features, time since last access, time between accesses, and
exponential decay counters are the same as the features used
in [32]. Time since last access and time between accesses
capture short-term access patterns while they retain informa-
tion about at most 32 accesses. Exponential decay counters
(EDCs) capture longer term trends. The end of chunk score is
identical to the previous production algorithm (§2.1).

4 Impact Distribution Analysis

Comparing cache algorithms may seem like a straightforward
hypothesis test (e.g., t-test or z-test) over an A/B testing ex-
periment. A new algorithm with lower byte miss ratio that
passes the hypothesis test would generally be considered as an
improvement. However, the operating conditions in a large-
scale system could be very diverse, and understanding the

robustness of an improvement is critical to decision making
in practice.

To illustrate the risk of solely relying on mean-shift esti-
mates, consider a scenario where a new algorithm is beneficial
for most machines but performs extremely poorly for some
small set of machines. In that case, applying the new algorithm
everywhere could be sub-optimal. Any algorithms without a
theoretical performance lower-bound (relative to an optimal
solution) have these risks, but the concern is exacerbated for
learning algorithms that are prone to over-fitting.

A naive approach to the diversity problem is to enumerate
all configurations and perform separate A/B tests (e.g., one
test for each rack where workload and hardware is assumed
to be similar). However, this severely limits the number of
data points, and the signal to noise ratio for each configuration
could be very poor in a production setting. Figure 1 is a typical
example of byte miss ratio variation for production machines
on the same rack with identical setting.

We propose a novel impact distribution analysis to get a
more holistic picture of how a new algorithm is affecting the
fleet. Specifically, instead of estimating the average perfor-
mance change, we try to estimate the distribution of perfor-
mance changes across different conditions.

4.1 Model of Measurements

We model the measured relative improvement as

M = I +N (1)

where I represents actual impact and N represents the noise.
In other words, we model the PDF of M as a convolution
between I and N.

The core idea is that we could directly sample M by A/B
tests, and sample N by A/A tests (performance difference
measured in no-op experiment), and once we have those two
distributions, we can get to I by deconvolution.

4.2 Measurement Setup

The environment we want to measure the effect of using
HALP comprises of racks from hundreds of locations. In our
experiment setup, we randomly split machines in a rack into
three different configurations:

• Experiment Machines: Experiment machines use the
HALP algorithm.

• No-op Machines: No-op machines use the baseline
caching algorithm. They are used to measure the produc-
tion environment noise.

• Control Machines: Control machines also use the base-
line caching algorithm. They are selected as the baseline
to compare with the experiment group and no-op group.



 Rack 1 exp
no-op

ctrl

Measurement 1

Noise 1
3

1

2

. . . . . .

 Rack n exp
no-op

ctrl

Measurement n

Noise n

Figure 4: Impact distribution analysis procedure: 1. Estimate measurement distribution. 2. Estimate noise distribution. 3. Fit
impact distribution.

Figure 4 shows how the measurements from these three
groups are used to calculate the impact distribution. We first
collect the relative values (e.g., relative byte miss ratios) of
experiment machines over control machines as measurement
samples (Measurement M). Then we collect the relative val-
ues of no-op machines over control machines as an estimation
of the environment noise (Noise N). Finally, we fit an im-
pact distribution from the measurement distribution and noise
distribution using each comparison as a data point, as we
describe in the next subsection.

4.3 Fitting Impact Distribution

Algorithm 1 Algorithm for fitting impact distribution

Input: measurement samples M, noise samples N, and dis-
tribution candidates.

Output: measurement distribution PM , impact distribution
PI , noise distribution PN .

1: PN = FitByMLE(dist=“t-dist”,N)

2: for candidate_dist in candidate_distributions do
3: // Approximate PM by discretized grid G.
4: PI = FitByMLE(dist=candidate_dist,M,PN), with

PM(m)≈ ∑v∈G PN(v)PI(m− v)
5: end for
6: return PI with the highest likelihood

Algorithm 1 describes our algorithm to fit the impact dis-
tribution given sample M and N. We first fit the noise dis-
tribution PN using noise samples with maximum likelihood
estimation (MLE) (Line 1). We assume the noise has zero
mean and follows a t-distribution. We choose a t-distribution
because we expect noise to exhibit a symmetric and bell-
shaped behavior like the normal distribution but allow fitting

to have more degrees of freedom.
Next, we fit the impact distribution (Lines 2-5). This is

done in two steps. First, a distribution type for impact needs
to be chosen (Line 2). Since this depends on the setting, sev-
eral well-known distributions could be reasonable candidates.
Therefore, we iterate over a list of common distributions (beta,
non-central student, and skewed normal) and pick the one that
best fits our data. Second, we estimate the measurement dis-
tribution by discretizing the distribution into a fine-grained
grid G. Then we use the maximum likelihood estimation to
fit the chosen distribution candidate to find the measurement
distribution that is the best fit (Line 4).

Note that this method is only feasible because we have
machine data from more than 200 countries and territories.
Without enough samples the fitting will not be able to recover
impact accurately from the noise.

5 Evaluation

In this section, our goal is to answer the following questions
for HALP and our impact distribution analysis:

• Can HALP improve cache performance without causing
regression in production? (§5.3)?

• What is the computation overhead of HALP compared
to the previous production algorithm (§5.4)?

• How does HALP compare to other learned and heuristic
algorithms (§5.5)?

• What are the effects when changing HALP’s hyperpa-
rameters (§5.6)?

5.1 Deployment Setup
Deployment HALP was rolled out in production in early
2022. The rollout was done in stages, and the impact of the
new algorithm was monitored using the impact distribution



0 7 14
Day

0.46

0.48

0.50

0.52

0.54

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s 

ra
ti
o Rollout

Figure 5: YouTube fleet normalized byte miss ratio for the
DRAM level, before and after rollout.

analysis on the changes in DRAM byte miss ratio. Figure 5
shows the DRAM byte miss ratio changes in the fleet before
and after the rollout, which shows a fleet-wide drop.

Release Process HALP has an online design to make sure
that the model does not degrade over time. As a result, the
online model does not require new releases. While the model
does not need to go through production releases, code changes
and any improvements in HALP design go into production
through releases that happen periodically. HALP is integrated
into the existing YouTube release process, which guarantees
that during rollout, HALP goes through the release tests and
any code changes are released in a safe manner.

Monitoring As part of maintaining stable performance,
HALP is integrated into the monitoring setup used for moni-
toring YouTube deployment. In addition to existing metrics
that monitor cache efficiency, two new metrics were added to
monitor HALP performance: 1) model accuracy, and 2) the
byte miss ratio difference between HALP and a holdout pre-
vious production algorithm. For model accuracy, we monitor
model loss which is an indicator of how good the model deci-
sions are. For the byte miss ratio difference, we keep 1% of
the machines running with previous production algorithm and
alert if the byte miss ratio for machines using HALP become
worse than the heuristic algorithm. We do not use the impact
distribution analysis here as our goal is to detect abnormal
behaviors with a low false positive ratio.

5.2 Experimental Methodology

Production experiments. To measure reduction in the byte
miss ratio and overhead, we used production experiments and
our impact distribution analysis. To use the impact distribu-
tion analysis, we randomly selected a small percentage of
racks from all locations. For each rack, we selected one ex-
periment machine, one no-op machine, and the rest as control
machines (§4). We use one day of data for our measurement
after observing HALP training is stable.

-20 -10 0 9
Impact (%) on P95 byte miss ratio

0

5

10

15

20

D
e
n
si

ty

1.5% of machines show
small regressions when
noise is not taken
into account.

Noise fit
Measurement fit
Impact fit
Noise hist
Measurement hist

Figure 6: Our impact distribution analysis can “denoise" the
experiment measurements from the no-op measurements and
reveals HALP’s clear average 9.1% byte miss ratio reduc-
tion with negligible regression. When noise is not taken into
account, the measurements show 1.5% of racks that were im-
pacted negatively, where some machines showed up to 4%
byte miss ratio increase.

Simulation experiments. We use simulation to measure
how HALP compares to other cache algorithms and how
the changes in hyperparameters effect the performance of
HALP. Because simulation does not have production noise
and is deterministic, and direct comparisons can be set up
reliably, we compare the byte miss ratio from simulations
directly instead of using our impact distribution analysis.

For simulation experiments (except two experiments in
§5.5), we use traces from a small percentage of randomly
selected locations. For each location selected, we choose four
traces, each three days long, with each trace coming from
different quarters in the calendar year of 2021 (except the
retrain interval experiment uses six days long trace). Using a
diverse set of traces helps reduce seasonal/weekly noise. For
each simulation, the first day of the trace is used as a warm-up,
and we measure the P95 byte miss ratio of the next two days.

5.3 HALP Improvements in Production

P95 byte miss ratio. This experiment measures the impact
of HALP on the byte miss ratio, disk latency, and joint latency
during production. To measure the improvement, we collected
byte miss ratios from machines on randomly selected racks
and applied our impact distribution analysis. Figure 6 shows
the relative change in the byte miss ratio distribution. The
regions and lines are the P95 byte miss ratio distribution
relative to the control groups.

The blue region is the no-op group relative change distribu-
tion. Although the no-op group uses the same configuration
as the control group, the noise can cause up to 10% differ-
ence in P95 byte miss ratio. The blue dash line shows the
fitted t-distribution of the noise. The orange region is the mea-



-25 0 25 50 75 100
Impact (%) on P50 disk latency

0

2

4

6

8

10
D

e
n
si

ty
Noise fit
Measurement fit
Impact fit
Noise hist
Measurement hist

Figure 7: Compared with the previous production algorithm,
HALP reduces disk first byte latency by an average of 3.8%.

surement distribution. The orange dash line shows the mea-
surement fitted gamma distribution, which was picked as the
best distribution for this specific measurement. When noise
is not taken into account, as shown by the orange dash line
there is 1.5% of racks that were impacted negatively, where
some machines showed up to 4% byte miss ratio increase.
However, just looking at the measurement fit, we do not know
whether the negative impact is because of the algorithm or
the production noise.

Our impact distribution analysis (Section 4) can “denoise"
the experiment measurements from the no-op measurements,
and the result is the green curve showing a clean byte miss
ratio reduction up to 24% with negligible regression, with an
average reduction of 9.1%. This shows HALP can not only
improve the average byte miss ratio, but also has negligible
regression. In addition, the variance of improvements also
shows different locations have different access patterns which
have different difficulty for learning.

Disk first byte latency. Disk first byte latency is the time
between a disk cache receives a request and returns the first
byte. It is a good indicator of DRAM cache efficiency because
a better DRAM eviction algorithm reduces the number of
requests to the disk layer, thus reducing the disk request queue
length. Figure 7 shows the disk first byte latency impact of
HALP. Compared with the previous production algorithm,
the change in latency ranges from a 13% reduction to a 5%
increase, with an average reduction of 3.8%.

The tail increase (the part of the impact fit that is above 0)
is likely to come from the object miss ratio increase, which is
more correlated with disk first byte latency than the byte miss
ratio. Different from the byte miss ratio, the object miss ratio
is the fraction of user requests missed in the cache. These two
metrics may conflict with each other. Since HALP’s primary
goal is to reduce the byte miss ratio, it may slightly increase
the object miss ratio in certain cases.

Join latency. Join latency is the time taken to start video
playback after the user hits “play”, and one of the most im-

portant metrics of streaming. Since join latency is a playback
metric that involves both clients and servers instead of servers
only, we are unable to use our impact distribution analysis to
measure it. We set up an experiment that distributes playbacks
from clients to server machines with and without HALP and
compares latency on clients. HALP reduces join latency from
1.03% to 1.41%, with an average reduction of 1.22%. This
shows that the improvement of the memory cache has a strong
impact on the end-to-end user experience.

5.4 HALP Computation Overhead

-40 -20 0 19
Impact (%) on P95 CPU per req

0

2

4

6

8

10

12

14

D
e
n
si

ty

Noise fit
Measurement fit
Impact fit
Noise hist
Measurement hist

Figure 8: The CPU overhead of HALP is 1.8% per request
with low variance. This implies the additional CPU cost is
roughly linear to the number of requests.

Learning comes with overheads, so it is important to mea-
sure these overheads and underline the trade-offs. In this
section, we show the computation overhead associated with
using HALP for cache eviction decisions, including prediction
and online training.

We have analyzed the extra CPU overhead that is incurred
while using HALP using our impact distribution analysis,
and Figure 8 shows the impact of P95 CPU normalized per
request. The CPU impact is consistently at 1.8% with low
variance, meaning the additional CPU cost is roughly lin-
ear to the number of requests. This is because both training
and prediction costs are roughly linear to the number of re-
quests. For training, the cost is roughly linear to the amount
of training data, and on average each prediction generates a
single pair of training data. In addition, each eviction requires
three pairwise comparisons. Finally, since all locations have
similar byte miss ratios, the number of evictions (misses) is
roughly linear in the number of requests. To conclude, the
computation overhead is small compared to the byte miss
ratio improvement.

5.5 HALP vs. Other Cache Algorithms
To further evaluate HALP, we ran simulation experiments to
compare it with other cache eviction algorithms.



0.0

0.2

0.4

0.6

0.8

1.0

P9
5
 b

yt
e
 m

is
s 

ra
ti
o
 (

n
o
rm

a
liz

e
d
)

LRU

FIFO

HALP

ARC

Trace id (sorted by HALP P95 byte miss ratio)

(a)

0 1 2 3
Time (day)

0.35

0.40

0.45

0.50

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s 

ra
ti
o

Adaptive-TinyLFU
LRB_4_Eviction
LRB
HALP

(b) Developed market

0 1 2 3
Time (day)

0.45

0.50

0.55

0.60

N
o
rm

a
liz

e
d
 b

yt
e
 m

is
s 

ra
ti
o

Adaptive-TinyLFU
LRB_4_Eviction
LRB
HALP

(c) Emerging market

Figure 9: (Fig. 9a) P95 byte miss ratios for different cache algorithms over a variety of traces in simulation. HALP achieves a
strictly better performance than all other algorithms on 92.6% of traces, and achieves the same performance as the best of the
other algorithms on 7% of traces, in effect performing worse than the best algorithm on only 0.4% of traces. (Figs. 9b and 9c)
Normalized byte miss ratio over time for HALP and LRB [32] on production traces from a developed market region, and an
emerging market region. HALP achieves a similar byte miss ratio, but only needs 4 eviction candidates compared to 64 for LRB.
Tuning LRB’s eviction candidates from 64 to 4 would increase P95 byte miss by about 2%.

Comparison with classic cache algorithms
We compared HALP with three heuristic cache algorithms:

LRU, FIFO, and ARC [25]. Figure 9a shows the normalized
P95 byte miss ratios for different traces, sorted by HALP P95
byte miss ratio. HALP achieves a strictly better performance
than all other algorithms on 92.6% of traces, and achieves the
same performance as the best of the other algorithms on 7%
of traces, in effect performing worse than the best algorithm
on only 0.4% of traces.

Comparison with advanced cache algorithms
We compared HALP with a state-of-the-art learned cache

algorithm LRB [32] and heuristic cache algorithm Adaptive-

64 128 256 512 1024
Cache size (GiB), log scale

20

10

0

10

20

30

B
yt

e
 m

is
s 

re
d
u
ct

io
n
 (

%
) 

to
 B

-L
R
U

LRB
Adaptive-TinyLFU
LRU

LeCaR
B-LRU

HALP

Figure 10: The byte miss reduction of different algorithms
compared to B-LRU on a public trace from a Wikipedia CDN
node. LRB, Adaptive-TinyLFU, HALP, and B-LRU achieve
the best performance individually at cache size 64 GiB, 128
GiB, 256 GiB, 512 GiB. At 1024 GiB, the cache is big enough
that all cache algorithms converge.

TinyLFU [15]. We use two YouTube production traces from
a developed market region and an emerging market region
in 2020 to get robust results. These traces are four days long.
Our implementation of LRB and Adaptive-TinyLFU is based
on LRB’s open-source simulator [1]. For a fair comparison,
we extended LRB’s features to be identical as HALP. We
tuned LRB’s major hyperparameter (memory window) using
its public implementation. In additional to using LRB’s orig-
inal 64 eviction candidates, we also tested using 4 eviction
candidates identical as HALP. Figure 9b and 9c show normal-
ized byte miss ratios over time for Adaptive-TinyLFU, LRB
with 4/64 eviction candidates, and LRB. We use the first day
of each trace as a warm-up, and exclude it from the figures.

Adaptive-TinyLFU achieves P95 byte miss ratios of 0.515
and 0.598 on two traces. Compared to it, LRB and HALP
achieve smaller ratios (0.479/0.565 for LRB, 0.475/0.564 for
HALP). HALP achieves similar P95 byte miss ratios com-
pared to LRB (0.17%/0.83% less byte misses) with less than
an order of magnitude computation overhead. For each evic-
tion it only compares 4 eviction candidates instead of 64
for LRB. As a result, HALP computes a prediction for each
eviction in 2.1 µs in comparison to 60 µs that is required by
LRB [32]. Tuning LRB’s eviction candidates from 64 to 4
would increase P95 byte misses by about 2% (to 0.489/0.575).
And this increase would be higher with larger cache sizes
given there are more number of objects in cache. In addition,
LRB’s performance is sensitive to the selection of its memory
window, which requires extensive tuning.

Comparison on a public general CDN trace
To test HALP’s performance on a general CDN workload, we

evaluated HALP on a trace from a Wikipedia CDN node [32].
We mimic LRB evaluation settings in cache sizes, the warmup
length, and the byte miss reduction metric (Figure 9(a) in
LRB), but we converted the object sizes into uni-size. We



select the uni-size to be 32 KiB to match the average request
size of the original trace. We compare HALP with the best-
performing cache algorithms in LRB evaluations, i.e., LRB,
Adaptive-TinyLFU, LeCaR, B-LRU, and LRU. We ran HALP
by our simulator, and baseline algorithms by LRB public sim-
ulator. For LRB, we use the hyperparameter values described
in the paper and its website. Compared to LRB, HALP does
not use the additional categorical feature in the trace.

Figure 10 shows the byte miss reduction of different algo-
rithms compared to an industry standard algorithm B-LRU
(LRU-eviction policy using a Bloom filter as admission con-
trol [24]). None of the algorithms achieves the best per-
formance across all cache sizes. LRB, Adaptive-TinyLFU,
HALP, and B-LRU achieve the best performance individu-
ally at cache size 64 GiB, 128 GiB, 256 GiB, 512 GiB. At
1024 GiB, the cache is big enough that all cache algorithms
converge. At such cache size B-LRU suffers from its admis-
sion control. Our observation for this trace is the frequency of
objects remains stable over time, making past frequency a reli-
able indicator of future frequency and allowing the frequency-
based heuristic algorithms such as Adaptive-TinyLFU to per-
form well. In contrast, the workload on YouTube exhibits
strong spatial locality, which means that past frequency is
less indicative of future frequency, resulting in a lower perfor-
mance of the frequency-based heuristic algorithms. Note the
differences between these results and Figure 9(a) in LRB are
likely due to the uni-size object transformation.

5.6 Hyperparameter Selection
We validate the effect of different hyperparameters. This in-
cludes different numbers of eviction candidates, different neu-
ral network architectures, and different retrain intervals.

Neural network architecture
HALP uses a simple neural network with one hidden layer.

Here we vary the number of hidden neurons in the hidden
layers and measure the byte miss ratio.

Fig. 11a shows the relationship between the geometric
mean of P95 normalized byte miss ratio of all traces as the
number of neurons in the hidden layers increase logarithmic
from 1 to 256. We see a marginal benefit by increasing the
number of neurons up to 8. Beyond this point, more hidden
representations do not help. To keep a safe margin, we select
the number of hidden neurons in our deployment to be 20.

Number of eviction candidates
HALP uses this parameter in training and prediction. After

candidates are selected by the heuristic policy, it iteratively
does pairwise ranking to select the final chunk to evict, and
later uses these comparisons to generate training data. We
vary the number of eviction candidates in the simulation, and
measure the byte miss ratio. Note that this changes training
and prediction distributions in lock-step.

Fig. 11b shows the relationship between the geometric

mean of P95 normalized byte miss ratio of all traces and
the number of candidates selected by the heuristic algorithm
varying from 2 to 16. As the number of eviction candidates in-
creases from 2 to 4, the byte miss ratio reduces from 60.4% to
59.3%. Further increasing the number of eviction candidates
has a marginal effect. Large numbers of eviction candidates
have a marginal benefit of the byte miss ratio, but too large
a number may harm the byte miss ratio if the other training
hyperparameters are not adjusted accordingly.

The number of pairwise comparisons per eviction increases
from 3 to 7 when the number of eviction candidates increases
from 4 to 8. This increase in CPU does not justify the less than
1% relative byte miss ratio reduction, as a result HALP uses
four eviction candidates and does three pairwise comparisons.

Retrain interval
HALP trains online as new requests are processed. We con-

duct simulation experiments to test different retrain intervals.
In order to only test the difference in updating the model
online, we increase the trace length to be 6 days from 3 days.
We use the first 3 days to train the model in the same retrain
interval, and validate that the training loss has been stable.
After that, we vary the retrain intervals in the next 3 days, and
only measure the byte miss ratio during the latter 3 days.

Fig. 11c shows the relationship between the geometric
mean of P95 normalized byte miss ratio of all traces and the
retrain intervals. As the retrain intervals increases from pro-
cessing every 1 new training data input to every 108 new train-
ing data input, the byte miss ratio slightly increases by less
than 0.2%. Our hypothesis is that the traffic pattern change is
slow in most traces. But to increase the algorithm robustness,
we keep the retrain interval to be every 1024 training data in-
put. This is acceptable in production given the CPU increase
is only 1.8% and enables the model to adjust to unpredictable
quick workload changes.

6 Related Work

Heuristic-based cache algorithm. Many heuristic-based
cache algorithms have been proposed in the past six decades,
and from them the most impactful ones include LRU,
FIFO, CLOCK [3], SLRU [19], 2Q [18], ARC [25], and
TinyLFU [15,16]. Many heuristic algorithms have low compu-
tation overhead and provable competitive ratios. But because
they are not adaptive enough, they work well in some traces
but not in others.

Learned cache eviction. Recently, many learning-based
cache algorithms have been proposed to make cache eviction
decisions. Table 2 summarizes the state-of-the-art learned
cache eviction and admission algorithms. We list four prop-
erties of learning-based cache algorithms: target application,
whether they are used to make admission or eviction deci-
sions, if they employ online learning, and which underlying
machine learning algorithm they employ.



1 2 4 8 16 32 64 128 256
Number of neurons in the hidden layer

0.60

0.61

0.62

0.63

0.64

G
e
o
 m

e
a
n
 o

f 
P9

5
 n

o
rm

a
liz

e
d
 B

M
R

(a)

2 4 8 16
Number of eviction candidates

0.590

0.592

0.594

0.596

0.598

0.600

0.602

0.604

G
e
o
 m

e
a
n
 o

f 
P9

5
 n

o
rm

a
liz

e
d
 B

M
R

(b)

102 104 106 108

Retrain interval (#training data)

0.5946

0.5948

0.5950

0.5952

0.5954

0.5956

0.5958

G
e
o
 m

e
a
n
 o

f 
P9

5
 n

o
rm

a
liz

e
d
 B

M
R

(c)

Figure 11: Geometric mean of P95 normalized byte miss ratio of all traces (a) as the number of neurons in the hidden layers
increases logarithmically from 1 to 256. We see a marginal benefit by increasing the number of neurons up to 8. (b) as the number
of candidates selected by the heuristic algorithm varies from 2 to 16. As the number of eviction candidates increases from 2 to 4,
the byte miss ratio reduces from 60.4% to 59.3%. Further increasing the number of eviction candidates has a marginal effect. (c)
as the retrain interval increases by how much training data is processed. As the retrain interval increases from processing every 1
new training data input to every 108 new training data input, the byte miss ratio slightly increases by less than 0.2%.

CACHEUS [26] proposes two new heuristic algorithms:
SR-LRU, a scan-resistant version of LRU, and CR-LFU, a
churn-resistant version of LFU. Then it proposes a regret
minimization algorithm to switch between these two experts.
As a limitation, the overall algorithm cannot adapt to a new
workload if neither of the two experts can adapt to it. In
addition, the metadata overhead scales linearly with the num-
ber of experts because each one needs to maintain its pri-
ority queue. [36] learns next request distribution from tags
collected by a distributed tracing framework. It combines a
lookup table, a K-Nearest Neighbor approach, and a Trans-
former model to achieve low overhead and high accuracy.
But it has a high learning overhead. LRB [32] uses a regres-
sion model to approximate Relaxed Belady, a relaxed oracle
algorithm. It uses random sampling to generate eviction can-
didates and training data. Because of a large number (64) of
candidates are needed, the eviction has a high computation
overhead. In addition, generating training data with enough
critical objects is costly due to the uniform sampling process.
And LRB’s performance is sensitive to the selection of the
memory window (its major hyperparameter).

Parrot [22] and LFO [8] use imitation learning to mimic
the oracle algorithm. The objective is to achieve an end-to-
end design, but they suffer from a distribution shift. This is
because they train their models in an offline fashion, and in
practice learning-based cache algorithms have a substantial
gap from an oracle, and the objects in the cache as a result
differ from a cache that would use an oracle algorithm.

AViC [5] is designed for a video streaming CDN, leverag-
ing the constant speed sequential access patterns, and predicts
the time to the next access for the following chunks. However,
it has a high implementation overhead because of the complex
synchronization between video sessions. Glider [31] targets
an eviction policy for CPU caches, and uses an LSTM model

for offline analysis. It uses a fast SVM model for an online
policy heavily leveraging the program counter (PC) address
feature, which is unavailable in the CDN domain.

LHD [6] estimates the hit density of an object between ad-
mission and eviction using Bayesian approaches. But it cannot
scale with increasing number of features since it does not have
a general model for prediction. Predictive Marker [23] is a
theoretical work using learning to augment a cache using the
Marker algorithm. This idea inspires the design of HALP.

Another line of works [14,20] use reinforcement learning to
directly optimize an eviction policy with the target objective.
But because cache feedback (hit) can take tens of millions
of steps, reinforcement learning approaches suffer from such
long feedback and currently have lower performance than
supervised learning approaches in practice.

Learned cache admission. In addition to learned eviction
policies, many recent research proposed to use learning in
cache admission. Cache admission is helpful when a cache
has a bottleneck in write constraints (e.g. SSD write amplifi-
cation and endurance), or a large portion of objects are never
reaccessed. The prominent papers include Flashield [17],
CacheLib [7], and CacheSack [35]. Because their decision
space is more limited than that of eviction algorithms, they
have worse performance. HALP’s eviction policy can be used
jointly with a learned admission policy.

Statistical hypothesis test. Many statistical hypothesis tests
have been proposed. But they often focus on using small data,
and not on measuring the distribution change. For example, a
standard t-test [33] measures the change of mean value.



Algorithm Year
Target
application

Learned admission
or eviction Online learning? Algorithm

HALP (ours) 2022 CDN Eviction Yes
1-hidden-layer MLP,
Heuristic + pairwise preference
ranking from re-accesses.

CacheSack [35] 2022 Flash cache Admission Yes Greedy optimization

CACHEUS [26] 2021 Storage Eviction Yes
Heuristic algorithms
w. regret minimization

Learning on distributed
traces [36] 2021 Storage Eviction No

Lookup Table, K-Nearest
Neighbors, Transformers

LRB [32] 2020 CDN Eviction Yes Decision trees

Parrot [22] 2020 CPU Eviction No Transformers

CacheLib [7] 2020 Multipurpose Admission No Private

AViC [5] 2019 CDN Both No Decision trees

Glider [31] 2019 CPU Eviction Yes SVM

Flashield [17] 2019 Flash cache Admission No SVM

LHD [6] 2018 KV store Eviction Yes Probability model

LFO [8] 2018 CDN Eviction No Decision trees

Predictive Marker [23] 2018 / Eviction / Learning + Marker algorithm
Harvesting
randomness [20] 2017 KV store Eviction Yes Reinforcement learning

Table 2: A summary of state-of-the-art learned cache eviction and admission algorithms

7 Future Work

For future work, we aim to expand HALP to the SSD and
HDD caching tiers of the YouTube CDN. We also seek to
jointly optimize eviction and admission policies. Another line
of future work we plan to explore is to redesign the features
and model architecture leveraging existing hardware accel-
erators. Right now, HALP uses only CPUs and the pairwise
comparisons that use the model to pick candidates are subject
to the CPU overhead limits acceptable in production. With
accelerators like GPUs or TPUs we will be able to explore a
larger design space of features and model architectures. One
challenge here is how to design an asynchronous batched
eviction algorithm to achieve a high utilization of accelerators
while preventing it on path of cache operations that require a
low latency.

8 Conclusion

This work describes the design, implementation, and evalu-
ation of HALP, a learned caching algorithm that has been
deployed to a large-scale production CDN. We also describe
an impact distribution analysis method that allows us to mea-
sure the impact of deploying a new cache algorithm in a

production setting with significant measurement noise. The
key insight of HALP is to augment a preexisting heuristic
caching policy with machine learning, using the heuristic
policy to pick candidates for eviction and the ML model to
decide which candidate to evict. The key insight of our impact
distribution analysis is modeling machine level measurement
noise by comparing machines with HALP deployed against
no-op machines.

These design decisions enable HALP’s robust byte miss
reduction by an average of 9.1%. In addition, these improve-
ments were achieved with a modest CPU overhead of 1.8%.

Acknowledgements

We are grateful to our anonymous reviewers, our shepherd
Francis Yan, Ken Barr, Nils Krahnstoever, Jeff Dean, Martin
Maas whose extensive comments substantially improved this
work. We also thank Yundi Qian and Richard McDougall who
contributed to the early stages of the project.



References

[1] LRB open-source simulator. https://github.com/
sunnyszy/lrb.

[2] XLA. https://www.tensorflow.org/xla.

[3] A paging experiment with the multics system. MIT Press,
1969.

[4] Vijay Kumar Adhikari, Sourabh Jain, and Zhi-Li Zhang.
Youtube traffic dynamics and its interplay with a tier-
1 isp: An isp perspective. In Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement,
IMC ’10, page 431–443, New York, NY, USA, 2010.
Association for Computing Machinery.

[5] Zahaib Akhtar, Yaguang Li, Ramesh Govindan, Emir
Halepovic, Shuai Hao, Yan Liu, and Subhabrata Sen.
Avic: a cache for adaptive bitrate video. In Proceedings
of the 15th International Conference on Emerging Net-
working Experiments And Technologies, pages 305–317,
2019.

[6] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving cache hit rate by maximizing hit den-
sity. In USENIX NSDI, pages 389–403, 2018.

[7] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, et al.
The CacheLib caching engine: Design and experiences
at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
753–768, 2020.

[8] Daniel S Berger. Towards lightweight and robust ma-
chine learning for cdn caching. In ACM HotNets, pages
134–140, 2018.

[9] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullen-
der. Learning to rank using gradient descent. Proceed-
ings of the 22nd international conference on Machine
learning, 2005.

[10] Victor Carbune, Thierry Coppey, Alexander Daryin,
Thomas Deselaers, Nikhil Sarda, and Jay Yagnik.
Smartchoices: hybridizing programming and machine
learning. arXiv preprint arXiv:1810.00619, 2018.

[11] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez,
Yong-Yeol Ahn, and Sue Moon. I tube, you tube, every-
body tubes: Analyzing the world’s largest user generated
content video system. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC
’07, page 1–14, New York, NY, USA, 2007. Association
for Computing Machinery.

[12] Ludmila Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching policy.
Technical report, Hewlett-Packard Laboratories, 1998.

[13] Ludmila Cherkasova and Gianfranco Ciardo. Role of
aging, frequency, and size in web cache replacement
policies. In Bob Hertzberger, Alfons Hoekstra, and Roy
Williams, editors, High-Performance Computing and
Networking, pages 114–123, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[14] Renato Costa and Jose Pazos. Mlcache: A multi-armed
bandit policy for an operating system page cache. Tech-
nical report, University of British Columbia, 2017.

[15] Gil Einziger, Ohad Eytan, Roy Friedman, and Ben
Manes. Adaptive software cache management. In ACM
Middleware, pages 94–106, 2018.

[16] Gil Einziger and Roy Friedman. TinyLFU: A highly
efficient cache admission policy. In IEEE Euromicro
PDP, pages 146–153, 2014.

[17] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In USENIX NSDI,
pages 65–78, 2019.

[18] Theodore Johnson and Dennis Shasha. 2Q: A low over-
head high performance buffer management replacement
algorithm. In VLDB, pages 439–450, 1994.

[19] Ramakrishna Karedla, J Spencer Love, and Bradley G
Wherry. Caching strategies to improve disk system
performance. IEEE Computer, 27(3):38–46, 1994.

[20] Mathias Lecuyer, Joshua Lockerman, Lamont Nelson,
Siddhartha Sen, Amit Sharma, and Aleksandrs Slivkins.
Harvesting randomness to optimize distributed systems.
In ACM HotNets, pages 178–184, 2017.

[21] Jie Li, Jinlong Wu, György Dán, Åke Arvidsson, and
Maria Kihl. Performance analysis of local caching
replacement policies for internet video streaming ser-
vices. In 2014 22nd International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), pages 341–348, 2014.

[22] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy
Ranganathan, and Junwhan Ahn. An imitation learn-
ing approach for cache replacement. In International
Conference on Machine Learning, pages 6237–6247.
PMLR, 2020.

[23] Thodoris Lykouris and Sergei Vassilvtiskii. Competitive
caching with machine learned advice. In International
Conference on Machine Learning, pages 3296–3305.
PMLR, 2018.

https://github.com/sunnyszy/lrb
https://github.com/sunnyszy/lrb
https://www.tensorflow.org/xla


[24] Bruce M Maggs and Ramesh K Sitaraman. Algorithmic
nuggets in content delivery. ACM SIGCOMM CCR,
45:52–66, 2015.

[25] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST’03), San Francisco, CA, March 2003.

[26] Liana V Rodriguez, Farzana Yusuf, Steven Lyons, Eysler
Paz, Raju Rangaswami, Jason Liu, Ming Zhao, and
Giri Narasimhan. Learning cache replacement with
CACHEUS. In 19th USENIX Conference on File and
Storage Technologies (FAST 21), pages 341–354, 2021.

[27] Sandvine. The global internet phenomena re-
port january 2022, January 2022. Available at
https://www.sandvine.com/hubfs/Sandvine_
Redesign_2019/Downloads/2022/Phenomena%
20Reports/GIPR%202022/Sandvine%20GIPR%
20January%202022.pdf?utm_referrer=https%3A%
2F%2Fwww.sandvine.com%2Fphenomena, accessed
06/17/22.

[28] Richard Schooler and Pawel Jurczyk. Streaming media
cache for media streaming service, August 27 2019. US
Patent 10,397,359.

[29] Nihar Shah and Martin Wainwright. Simple, robust and
optimal ranking from pairwise comparisons. Journal of
Machine Learning Research, 18:1–38, 2018.

[30] Shailesh Shukla. Introducing media cdn—the
modern extensible platform for delivering im-
mersive experiences, April 2022. Available at
https://cloud.google.com/blog/products/
networking/introducing-media-cdn, accessed
09/07/22.

[31] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin
Lin. Applying deep learning to the cache replacement
problem. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
413–425, 2019.

[32] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
529–544, 2020.

[33] Student. The probable error of a mean. Biometrika,
pages 1–25, 1908.

[34] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez,
Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao,
and Giri Narasimhan. Driving cache replacement with
ML-based LeCaR. In USENIX HotStorage, 2018.

[35] Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Mer-
chant, and Homer Wolfmeister. CacheSack: Admission
optimization for google datacenter flash caches. In 2022
USENIX Annual Technical Conference (USENIX ATC
22), pages 1021–1036, 2022.

[36] Giulio Zhou and Martin Maas. Learning on distributed
traces for data center storage systems. Proceedings of
Machine Learning and Systems, 3, 2021.

A Details about the loss function and model
weight updates

To explain why we use a cross entropy loss: let w denote the
neural network weight parameters and sw( f (k, t)) denote the
score output of the neural network for features corresponding
to cache key k at time t. Assume that the feedback generation
process for the pairwise comparison orders the cache key
k1 ahead of k2 while querying for the first access to either
after time t (i.e. k1 arrives before k2 for the first access to
either of them after time t). In this case, the cross entropy loss
penalizes the loss according to how much the predicted score
for k2 exceeds that of k1. Specifically, with ∆ = sw( f (k2, t))−
sw( f (k1, t)), as the difference in scores, the neural network
weight parameters w are adjusted based on the gradient of the
loss function log(1+e∆). When ∆ << 0, the loss is close to 0,
but when ∆ >> 0, the loss is linear in ∆ and varies smoothly
around 0.

B Analysis of a simple model for reranking

Let (U,H,L) be a triple of jointly distributed random vari-
ables. Let

(U1,H1,L1), . . . ,(Un,Hn,Ln)

be id samples ∼ (U,H,L). The value Hi corresponds to the
score for item i predicted by some (heuristic) ranking policy
and similarly, Li corresponds to the score predicted by, (say
a learned) ranking policy L. Ui denotes the true utility from
object i, but this is a latent variable. The problem is to choose
an index i such that Ui is as large as possible. Define the
expected utility of a policy X ∈ {U,H,L} as follows:

U(X) = E[Uargmaxi(Xi)]

We’d like to pick i∗ , argmaxi(Ui), which achieves the op-
timal utility U(U), but we only observe (H,L) with U be-
ing a latent variable. Given two ranking policies H and L,
define an aggregate selection policy on them, π(H,L) as a
map 2, π : R2n 7→ [n], and the resulting expected utility as
U(π), E[Uπ(H,L)]. Next, we describe and analyze a simple
aggregation strategy that we’ve discovered to be useful in
learned caching. Let λX (i) be defined as the item with ranked

2[n] denotes the set {1, . . . ,n}

https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2022/Phenomena%20Reports/GIPR%202022/Sandvine%20GIPR%20January%202022.pdf?utm_referrer=https%3A%2F%2Fwww.sandvine.com%2Fphenomena
https://cloud.google.com/blog/products/networking/introducing-media-cdn
https://cloud.google.com/blog/products/networking/introducing-media-cdn


order3 i when using the ranking policy X for X ∈ {U,H,L}.
For each k ∈ [n], define πk(H,L) as the item chosen when
re-ranking the top k items in the heuristic H according to L.

πk(H,L), λH( j), where j = argmax
i∈[k]

LλH (i)

Figure 12: The benefit of rank aggregation evaluated over var-
ious configurations for the correlation coefficients based on a
sample of N = 20 items. The diagonal line indicates points
at which ρH = ρL. The green region indicates configurations
where U(π2(H,L))> U(H) based on a 95% confidence in-
terval generated from bootstrap estimates of the sample mean.
the blue region indicates areas where U(π2(H,L))> U(H)
with at least a 95% CI. The grey areas are where the con-
fidence interval overlaps with 0. Interestingly, even when
ρH > ρL, it could be advantageous to switch to the lightweight
reranking of just the top two items despite having a poor (e.g.,
learned) policy L. Our experiments indicate that as we in-
crease n, it is better to uniformly switch from H to π2(H,L)
for all configurations.

The notation implies π1(H,L) = λH(1) and
πn(H,L) = λL(1). In other words, U(π1(H,L)) = U(H) and
U(πn(H,L)) = U(L). To understand precisely when the
proposed aggregation might help, we now make some as-
sumptions to help with mathematical tractability, analysis and
visualization. Let ρH ≥ 0,ρL ≥ 0 be such that ρ2

H +ρ2
L ≤ 1,

and consider the jointly Gaussian distribution,

(U,H,L)∼N

0,


1 ρH ρL

ρH 1 0

ρL 0 1




It is clear that U(H) and U(L) are monotone in ρH ,ρL respec-
tively under the above assumptions. To map the above model

3order 1 is the largest item.

to a motivating practical scenario, think of H as an efficient
heuristic strategy (e.g. LRU). L could be imagined to be a
learned policy that is (1) expensive to evaluate (2) not always
safe, i.e. we can end up with ρL < ρH . The proposed mecha-
nism addresses both of these issues simultaneously. For (1)
we only need to invoke L on at most e.g. k = 2 items, and for
(2) the below claim argues that we get an improved outcome,
U(π2(H,L)) compared to the baseline strategy U(H) (which
is also naturally greater than U(L), when ρH > ρL). Based on
numerical analysis, we observe, and hypothesize more gener-
ally, that as n→ ∞, the re-ranking strategy improves over the
pure heuristic policy, i.e. U(π2(H,L)) > U(H). The above
hypothesis applies to arbitrary positive values of ρH and ρL.
It says that we can improve on H even with a worse alternate
policy L. This helps give some evidence for why such a strat-
egy appears to be “safe” in terms of improvement over the
baseline. In Figure 12, we plot the situation numerically for
N = 20, for all possible problem configurations of ρH ,ρL.


	Introduction
	Background
	YouTube CDN Edge Cluster Architecture
	Heuristic and Learned Cache Algorithms

	HALP Eviction Policy Design
	Heuristic-based Candidate Selection
	Ranking-based Learned Eviction

	Impact Distribution Analysis
	Model of Measurements
	Measurement Setup
	Fitting Impact Distribution

	Evaluation
	Deployment Setup
	Experimental Methodology
	HALP Improvements in Production
	HALP Computation Overhead
	HALP vs. Other Cache Algorithms
	Hyperparameter Selection

	Related Work
	Future Work
	Conclusion
	Details about the loss function and model weight updates
	Analysis of a simple model for reranking

