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When a beginner starts to explore a new field ...
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Sort by relevance
Sort by date

+/ include patents
/! include citations

Create alert

Statistical Machine Learning - n

About 2,160,000 results (0.05 sec)

Machine learning, neural and statistical classification

D Michie, DJ Spiegelhalter, CC Taylor - 1994 - Citeseer

Abstract The aim of this book Is to provide an up-to-date review of different approaches to
classification, compare their performance on a wide range of challenging data-sets, and
draw conclusions on their applicability to realistic industrial problems.

Cited by 2868  Related articles  All 9 versions  Cite Save More

[BooK] Statistical learning theory

VN Vapnik, V Vapnik - 1998 - ai.ato.ms

he theory provides a sound statistical basis for assessing model adequacy under these
circumstances, which are precisely the circumstances encountered in MACHIN
LEARNING, PATTERN RECOGNITION, and exploratory data analysis. ...

Cited by 25723 Related articles  All 7 versions  Cite Save More

[PDF] Statistical machine learning makes automatic control practical for internet datacenters
P Bodik, R Griffth, C Sutton, A Fox, M Jordan. . - Proceedings of the ..., 2009 - usenix.org

Abstract Horizontally-scalable Internet services on clusters of commodity computers appear

to be a great fit for automatic control: there s a target output (service-level agreement),

observed output (actual latency), and gain controller (adjusting the number of servers). Yet ...

Cited by 137 Related articles  All 15 versions  Cite  Save More

Distributed optimization and statistical learning via the alternating direction method of
multipliers

S Boyd, N Parikh, E Chu, B Peleato... - ... ® in Machine Leaming, 2011 - dl.acm.org

Abstract Many problems of recent interest in statistics and machine learning can be posed in

the framework of convex optimization. Due to the explosion in size and complexity of modern

datasets, it is increasingly important to be able to solve problems with a very large number ...

Cited by 2964 Related articles  All 40 versions  Cite Save More

Figure 1 : Result of Google Scholar

Modeling Topic-level Academic Influence in S Feb 13, 2016

5 /37



Motivation

Google

Scholar

Atticles
Case law

My library

Any time
Since 2016
Since 2015
Since 2012
Custom range...

Sort by relevance
Sort by date

+/ include patents
/! include citations

Create alert

Statistical Machine Learning - n

How to rank these papers?

Machine learning, neural and statistical classification

D Michie, DJ Spiegelhalter, CC Taylor - 1994 - Citeseer

Abstract The aim of this book Is to provide an up-to-date review of different approaches to
classification, compare their performance on a wide range of challenging data-sets, and
draw conclusions on their applicability to realistic industrial problems.

Cited by 2868  Related articles  All 9 versions  Cite Save More

[BooK] Statistical learning theory

VN Vapnik, V Vapnik - 1998 - ai.ato.ms

he theory provides a sound statistical basis for assessing model adequacy under these
circumstances, which are precisely the circumstances encountered in MACHIN
LEARNING, PATTERN RECOGNITION, and exploratory data analysis. ...

Cited by 25723 Related articles  All 7 versions  Cite Save More

[PDF] Statistical machine learning makes automatic control practical for internet datacenters
P Bodik, R Griffth, C Sutton, A Fox, M Jordan. . - Proceedings of the ..., 2009 - usenix.org

Abstract Horizontally-scalable Internet services on clusters of commodity computers appear

to be a great fit for automatic control: there s a target output (service-level agreement),

observed output (actual latency), and gain controller (adjusting the number of servers). Yet ...

Cited by 137 Related articles  All 15 versions  Cite  Save More

Distributed optimization and statistical learning via the alternating direction method of
multipliers

S Boyd, N Parikh, E Chu, B Peleato... - ... ® in Machine Leaming, 2011 - dl.acm.org

Abstract Many problems of recent interest in statistics and machine learning can be posed in

the framework of convex optimization. Due to the explosion in size and complexity of modern

datasets, it is increasingly important to be able to solve problems with a very large number ...

Cited by 2964 Related articles  All 40 versions  Cite Save More

Figure 2 : Defects of Google Scholar

Modeling Topic-level Academic Influence in S Feb 13, 2016

6 /37



Motivation

Google

Scholar

Atticles
Case law

My library

Any time
Since 2016
Since 2015
Since 2012
Custom range...

Sort by relevance
Sort by date

+/ include patents
/! include citations

Create alert

Statistical Machine Learning - n
[oout2:160,000 resuis .05 soc}—#How to rank these papers?

Machine learning, neural and statistical classification

D Michie, DJ Spiegelhalter, CC Taylor - 1994 - Citeseer

Abstract The aim of this book Is to provide an up-to-date review of different approaches to
classification, compare their performance on a wide range of challenging data-sets, and

draw conclusions on their applicability to realistic industrial problems. .
Cited by 2868 Related articles Al 9 versions Cite Save More Suppose we intend to
[BooK] Statistical learning theory follow this direction
VN Vapnik, V Vapnik - 1998 - ai.ato.ms Which related work
he theory provides a sound statistical basis for assessing model adequacy under mesel ”

circumstances, which are precisely the circumstances encountered in MACHINE S| d we read?
LEARNING, PATTERN RECOGNITION, and exploratory data analysis. ..
Cied by 25723 Related artices All7 versions  Cite  Save More

[PDF] Statistical machine Ieamlng makes automatic control practlc for internet datacenters
P Bodik, R Griffith, C Sutton, A Fox, M Jordan. .. - Proceedings of the
Abstract Horizontally-scalable Internet services on clusters of commodity computers agpear
to be a great fit for automatic control: there s a target output (service-level agreemenf),
observed output (actual latency), and gain controller (adjusting the number of servefs). Yet ...
Cited by 137 Related articles  All 15 versions  Cite  Save More

Distributed optimization and istical learning via the alternating direction method of
multipliers
S Boyd, N Parikh, E Chu, B Peleato... - ... ® in Machine Leaming, 2011 - dl.acm.org

[Abstract Many problems of recent interest in statistics and machine learning can be posed in
the framework of convex optimization. Due to the explosion in size and complexity of modern
datasets, it is increasingly important to be able to solve problems with a very large number ..
Cited by 2964 _ Related articles _All 40 versions __Cite__Save _More

Figure 3 : Defects of Google Scholar

Modeling Topic-level Academic Influence in S Feb 13, 2016

737



Motivation

Stand on the shoulders of giants

— Isaac Newton
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Find those giants !l
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J-Index Framework

J-Index Framework

Three assumptions of J-Index:

@ A paper’s academic influence increases as it gains more citations.
@® A paper with stronger citations intends to be more influential.
© A paper cited by more innovative papers is more influential.

We define the J-Index as follows:

J-Index-Score(u Z A(e) x 0(e,u)
ceC(u)

e C(u): the set of paper u's citations, obtained from input dataset.

e A\(c): the innovativeness of paper c.

d(c,u): the citation strength between paper ¢ and paper u.

Both A(¢) and (¢, u) are obtained from subsequent model.
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Generative Model

Reference Topic Model is one way to obtain A(c) and d(c, u).

The intuition: a researcher may write a word based on his/her own
idea or “inherits” some thoughts from one of its references.

Topic Innovation: come from one's own idea.

Topic Inheritance: come from one of cited papers.

Citation Strength: determine which reference is selected
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Generative Model

1. For each topic index k € {1,..., K}
(a) Draw a word distribution (g, ~ Dir(3)
2. For each document index m € {1,...,M}
(a) Draw a topic distribution 8,,, ~ Dir(cx)
(b) Draw a reference distribution 8,, ~ Dir(n|L,,)
(c) Draw an inheritance index A, ~ Beta(a,,, ax,)
(d) For each word n € {1, ..., Ny} in document m:
(1) Flip a coin 8y, ~ Bern(\,,)
(ii) if 8ym,n = Ot
Draw a topic 2, n, ~ Multi(0,,)
Draw a word W, n, ~ Multi(cpzm’n)
(iii) else (8m,n = 1):
Draw a reference ¢, , ~ Multi(d,,)
Draw a topic 2, ~ Multi(0.,, ,.)
Draw a word Wy, ~ Multl(cpz )

Figure 10 : Generative Model of RefTM
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(a) Draw a topic distribution 8,,, ~ Dir(cx)
(b) Draw a reference distribution 8,, ~ Dir(n|L,,)
(c) Draw an inheritance index A, ~ Beta(a,,, ax,)

(d) For each word n € {1, ..., Ny} in document m:
Topic (i) Flip a coin Sm.n ™ Bern. Innovativeness
Innovation if Sm,n =

Draw a topic 2, n, ~ Multi(0,,)
Draw a word W, n, ~ Multi(cpzm,n)

Topic )n}else (8m,n = 1): Citation

Inheritence

graw a reference Crm.n ~ Multi(d,,,) Strength
raw a topic 2m, n ~ Multi(0.,, ,.)

Draw a word W, ~ Multl(cpz )

Figure 11 : Generative Model of RefTM
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e Roll a dice NV times, side ¢ shows n; times.
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Digression: Intuition of Inference Process

Roll a dice N times, side 7 shows n; times.

What's the best estimation of each side’s probability.

For each side i, probability P; = % = —g“—
j=1"T

Smooth Effect: Suppose we have already view each side i A; times.
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Reference Topic Model (RefTM) Parameter Estimation

Digression: Intuition of Inference Process

Roll a dice N times, side 7 shows n; times.

What's the best estimation of each side’s probability.
For each side i, probability P; = & = %
Smooth Effect: Suppose we have already view each side i A; times.
nitA;
So1(nj+A))

Update: For each side ¢, probability P, =

Inference: Observation — Parameters
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Reference Topic Model (RefTM) Parameter Estimation

Digression: Intuition of Inference Process

e Roll a dice NV times, side ¢ shows n; times.

e What's the best estimation of each side's probability.

e For each side 4, probability P; = 5 = 6"7171
j=1"j
e Smooth Effect: Suppose we have already view each side ¢ \; times.

e Update: For each side i, probability P; = —z0t2i
G=1(n5tA;)
e Inference: Observation »— Parameters

e In RefTM, observations: words & citations; parameters (we mainly
concerned): A and §
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Parameter Estimation

RefTM Inference: Gibbs Sampling

p(s; = 0|8, w, 2,+)

(i@ —1)+ni Y 4o . NO —14an,
nQO Wi Ka—1 NP+ —1)+ay, +ax,
P( P = 1|sﬂ‘iyw zvciv') X
ni @4 miEM-1)+a NO—1+tay,
( <o>+n< )(1)+Ka 1

. 1)+N(D)+a>‘n+ax(.
p(cile—i,w, 2,8 =1,-)

i (0)+(nz 1)1 .

Rpi—1+4n
(><o>+n< )(1)+Ka 1

RG)+Lpnn—1

P(2i|2—i, w, 8 = 0,-) x
n;’+ﬁ 1 (nf,‘;(g) 1)+ngi i ig
ROTVA1 O Ka1

p(2i|2—i, w, 80 = 1,¢iy0)
nzl +B-1

ngi (D)+(n 1(1)—1)+a
(>(°’+n< T Ka1

nl)+va— 1

Algorithm 1 Gibbs Sampling Algorithm for RefTM
Input: K, w, , 8,1, A, An
Output: Parameter sets {6, @, 8, A
Read in data and zero out all count caches
Randomly initialize z;, ¢;, 8;
for iter = 11t0 Njjer do
for all documents m € [1, M] do
for all words n € [1, Ny, in document m do
if 8,,,n = 0 then
Update the counts n(k)( ), ,(n
else "
Update the counts nd) e
Draw a new § from Egs.(2-3)
if §=0then
Update the counts n'”"‘ "Nk
Draw a new topic k from Eq (5)
Update the counts n(k) 0) w""" N
else
Draw a new reference ¢ from Eq.(4)
Update the counts RS, , R, nj ™"

1)R1nR

s Nk
Draw a new topic k from Eq.(6)
Update the counts n(k)( ) ng, n™" g
Read out parameters set 8, ¢, A, d by Egs.(7-10)

Figure 12 : Gibbs sampling equations & Algorithm for RefTM
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Figure 13 : Right hand side is an illustrative citation graph in which the thickness of edge
represents the citation strength and the vertex size indicates one papers academic influence.
Left hand side presents each paper's J-Index.
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Datasets

e Dataset 1: a large unsupervised collection of 426728 articles with
over 209 million citations.

e Dataset 2: a small supervised collection of 799 papers obtained from
(Liu et al. 2010).

e The average paper length of two corpora are 83 and 98 words.
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@ Metrics: PMI-Score (Newman et al. 2010) and topic coherence-Score
(Mimno et al. 2011).
® Using dataset 1 and an external dataset of 3.34 million papers when
calculating PMI-Score.

e Citation Strength Prediction
@ Using dataset 2, in which the strength of each citation is classified
into three levels — "1, 2, 3".

@® Metrics: averaged AUC value for decision boundaries “1 vs. 2, 3" and
“1, 2 vs. 3".
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e Topic Coherence
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® Using dataset 1 and an external dataset of 3.34 million papers when
calculating PMI-Score.

e Citation Strength Prediction

@ Using dataset 2, in which the strength of each citation is classified
into three levels — “1, 2, 3".

@® Metrics: averaged AUC value for decision boundaries “1 vs. 2, 3" and
“1, 2 vs. 3".

e Case Study: Rank INFOCOM
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e PMI-Score: RefTM outperforms LDA by 12% when K = 50.
e Topic Coherence-Score: RefTM outperforms LDA slightly.
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Citation Strength Prediction
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Figure 15 : Citation Strength Prediction measured by averaged AUC

e Reduce the normalization constraint of § in RefTM.

e RefTM clearly outperforms two baseline methods.
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el
Case Study: Rank INFOCOM

Table 2: Top 5 Articles in INFOCOM 2003 randked by J-Index & citaions

Title J-Index citation counts
Top 5 Articles in INFOCOM 2003 ranked by J-Index

Ad hoc positioning system (APS) using AOA 6.75 115
Performance anomaly of 802.11b 5.17 127
[Packet leashes: a defense against wormhole attacks in wireless networks 4.13 74|
Unreliable sensor grids: coverage, connectivity and diameter 4.00 82
Sensor deployment and target localization based on virtual forces 3.61 60
Top 5 Articles in INFOCOM 2003 ranked by citation number

Performance anomaly of 802.11b 5.17 127
Ad hoc positioning system (APS) using AOA 6.75 115
Optimal routing, link scheduling and power control in multihop wireless networks ~ 2.26 109
Sprite: a simple, cheat-proof, credit-based system for mobile ad-hoc networks 2.43 88
Unreliable sensor grids: coverage, connectivity and diameter 4.00 82

Figure 16 : Citation Strength Prediction measured by averaged AUC

e Rankings by J-Index and citations number are correlated.

e J-Index favors those paper that propose novel “ideas”.
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e Conclusions:

@ Model academic influence — facilitate ranking and recommendation.
@® J-Index framework — consider citation strength and paper’s novelty.
© Reference Topic Model — combine citation network into topic model.

e Future works:

@ RefTM in the incremental citation network.
@® Consider multiple factors, especially the temporal information.
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